use std::io::Write; use std::collections::*; type Map = BTreeMap; type Set = BTreeSet; type Deque = VecDeque; fn run() { input! { n: usize, q: usize, s: bytes, ask: [(u8, usize1, usize); q], } let mut set = (0..n).collect::>(); let mut seg = SegmentTreePURQ::new(n, Matrix::one(3), |a, b| a.matmul(b)); for (i, s) in s.iter().enumerate() { let mut mat = Matrix::one(3); if *s == b'0' { mat[0].fill(M::one()); } else { mat[1].fill(M::one()); } seg.update_tmp(i, mat); } seg.update_all(); let out = std::io::stdout(); let mut out = std::io::BufWriter::new(out.lock()); for (op, l, r) in ask { if op == 1 { while let Some(&x) = set.range(l..r).next() { set.remove(&x); seg.update(x, Matrix::one(3)); } } else { let ans = seg.find(l, r)[1][2]; writeln!(out, "{}", ans).ok(); } } } fn main() { run(); } type M = ModInt<998244353>; // ---------- begin input macro ---------- // reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 #[macro_export] macro_rules! input { (source = $s:expr, $($r:tt)*) => { let mut iter = $s.split_whitespace(); input_inner!{iter, $($r)*} }; ($($r:tt)*) => { let s = { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); s }; let mut iter = s.split_whitespace(); input_inner!{iter, $($r)*} }; } #[macro_export] macro_rules! input_inner { ($iter:expr) => {}; ($iter:expr, ) => {}; ($iter:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($iter, $t); input_inner!{$iter $($r)*} }; } #[macro_export] macro_rules! read_value { ($iter:expr, ( $($t:tt),* )) => { ( $(read_value!($iter, $t)),* ) }; ($iter:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($iter, $t)).collect::>() }; ($iter:expr, chars) => { read_value!($iter, String).chars().collect::>() }; ($iter:expr, bytes) => { read_value!($iter, String).bytes().collect::>() }; ($iter:expr, usize1) => { read_value!($iter, usize) - 1 }; ($iter:expr, $t:ty) => { $iter.next().unwrap().parse::<$t>().expect("Parse error") }; } // ---------- end input macro ---------- use std::ops::*; // ---------- begin trait ---------- pub trait Zero: Sized + Add { fn zero() -> Self; fn is_zero(&self) -> bool; } pub trait One: Sized + Mul { fn one() -> Self; fn is_one(&self) -> bool; } pub trait SemiRing: Zero + One {} pub trait Ring: SemiRing + Sub + Neg {} pub trait Field: Ring + Div {} impl SemiRing for T where T: Zero + One {} impl Ring for T where T: SemiRing + Sub + Neg {} impl Field for T where T: Ring + Div {} // ---------- end trait ---------- // ---------- begin modint ---------- pub const fn pow_mod(mut r: u32, mut n: u32, m: u32) -> u32 { let mut t = 1; while n > 0 { if n & 1 == 1 { t = (t as u64 * r as u64 % m as u64) as u32; } r = (r as u64 * r as u64 % m as u64) as u32; n >>= 1; } t } pub const fn primitive_root(p: u32) -> u32 { let mut m = p - 1; let mut f = [1; 30]; let mut k = 0; let mut d = 2; while d * d <= m { if m % d == 0 { f[k] = d; k += 1; } while m % d == 0 { m /= d; } d += 1; } if m > 1 { f[k] = m; k += 1; } let mut g = 1; while g < p { let mut ok = true; let mut i = 0; while i < k { ok &= pow_mod(g, (p - 1) / f[i], p) > 1; i += 1; } if ok { break; } g += 1; } g } pub const fn is_prime(n: u32) -> bool { if n <= 1 { return false; } let mut d = 2; while d * d <= n { if n % d == 0 { return false; } d += 1; } true } #[derive(Clone, Copy, PartialEq, Eq)] pub struct ModInt(u32); impl ModInt<{ M }> { const REM: u32 = { let mut t = 1u32; let mut s = !M + 1; let mut n = !0u32 >> 2; while n > 0 { if n & 1 == 1 { t = t.wrapping_mul(s); } s = s.wrapping_mul(s); n >>= 1; } t }; const INI: u64 = ((1u128 << 64) % M as u128) as u64; const IS_PRIME: () = assert!(is_prime(M)); const PRIMITIVE_ROOT: u32 = primitive_root(M); const ORDER: usize = 1 << (M - 1).trailing_zeros(); const fn reduce(x: u64) -> u32 { let _ = Self::IS_PRIME; let b = (x as u32 * Self::REM) as u64; let t = x + b * M as u64; let mut c = (t >> 32) as u32; if c >= M { c -= M; } c as u32 } const fn multiply(a: u32, b: u32) -> u32 { Self::reduce(a as u64 * b as u64) } pub const fn new(v: u32) -> Self { assert!(v < M); Self(Self::reduce(v as u64 * Self::INI)) } pub const fn const_mul(&self, rhs: Self) -> Self { Self(Self::multiply(self.0, rhs.0)) } pub const fn pow(&self, mut n: u64) -> Self { let mut t = Self::new(1); let mut r = *self; while n > 0 { if n & 1 == 1 { t = t.const_mul(r); } r = r.const_mul(r); n >>= 1; } t } pub const fn inv(&self) -> Self { assert!(self.0 != 0); self.pow(M as u64 - 2) } pub const fn get(&self) -> u32 { Self::reduce(self.0 as u64) } pub const fn zero() -> Self { Self::new(0) } pub const fn one() -> Self { Self::new(1) } } impl Add for ModInt<{ M }> { type Output = Self; fn add(self, rhs: Self) -> Self::Output { let mut v = self.0 + rhs.0; if v >= M { v -= M; } Self(v) } } impl Sub for ModInt<{ M }> { type Output = Self; fn sub(self, rhs: Self) -> Self::Output { let mut v = self.0 - rhs.0; if self.0 < rhs.0 { v += M; } Self(v) } } impl Mul for ModInt<{ M }> { type Output = Self; fn mul(self, rhs: Self) -> Self::Output { self.const_mul(rhs) } } impl Div for ModInt<{ M }> { type Output = Self; fn div(self, rhs: Self) -> Self::Output { self * rhs.inv() } } impl AddAssign for ModInt<{ M }> { fn add_assign(&mut self, rhs: Self) { *self = *self + rhs; } } impl SubAssign for ModInt<{ M }> { fn sub_assign(&mut self, rhs: Self) { *self = *self - rhs; } } impl MulAssign for ModInt<{ M }> { fn mul_assign(&mut self, rhs: Self) { *self = *self * rhs; } } impl DivAssign for ModInt<{ M }> { fn div_assign(&mut self, rhs: Self) { *self = *self / rhs; } } impl Neg for ModInt<{ M }> { type Output = Self; fn neg(self) -> Self::Output { if self.0 == 0 { self } else { Self(M - self.0) } } } impl std::fmt::Display for ModInt<{ M }> { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.get()) } } impl std::fmt::Debug for ModInt<{ M }> { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.get()) } } impl std::str::FromStr for ModInt<{ M }> { type Err = std::num::ParseIntError; fn from_str(s: &str) -> Result { let val = s.parse::()?; Ok(ModInt::new(val)) } } impl From for ModInt<{ M }> { fn from(val: usize) -> ModInt<{ M }> { ModInt::new((val % M as usize) as u32) } } // ---------- end modint ---------- // ---------- begin precalc ---------- pub struct Precalc { fact: Vec>, ifact: Vec>, inv: Vec>, } impl Precalc { pub fn new(size: usize) -> Self { let mut fact = vec![ModInt::one(); size + 1]; let mut ifact = vec![ModInt::one(); size + 1]; let mut inv = vec![ModInt::one(); size + 1]; for i in 2..=size { fact[i] = fact[i - 1] * ModInt::from(i); } ifact[size] = fact[size].inv(); for i in (2..=size).rev() { inv[i] = ifact[i] * fact[i - 1]; ifact[i - 1] = ifact[i] * ModInt::from(i); } Self { fact, ifact, inv } } pub fn fact(&self, n: usize) -> ModInt { self.fact[n] } pub fn ifact(&self, n: usize) -> ModInt { self.ifact[n] } pub fn inv(&self, n: usize) -> ModInt { assert!(0 < n); self.inv[n] } pub fn perm(&self, n: usize, k: usize) -> ModInt { if k > n { return ModInt::zero(); } self.fact[n] * self.ifact[n - k] } pub fn binom(&self, n: usize, k: usize) -> ModInt { if n < k { return ModInt::zero(); } self.fact[n] * self.ifact[k] * self.ifact[n - k] } } // ---------- end precalc ---------- impl Zero for ModInt<{ M }> { fn zero() -> Self { Self::zero() } fn is_zero(&self) -> bool { self.0 == 0 } } impl One for ModInt<{ M }> { fn one() -> Self { Self::one() } fn is_one(&self) -> bool { self.get() == 1 } } // ---------- begin array op ---------- struct NTTPrecalc { sum_e: [ModInt<{ M }>; 30], sum_ie: [ModInt<{ M }>; 30], } impl NTTPrecalc<{ M }> { const fn new() -> Self { let cnt2 = (M - 1).trailing_zeros() as usize; let root = ModInt::new(ModInt::<{ M }>::PRIMITIVE_ROOT); let zeta = root.pow((M - 1) as u64 >> cnt2); let mut es = [ModInt::zero(); 30]; let mut ies = [ModInt::zero(); 30]; let mut sum_e = [ModInt::zero(); 30]; let mut sum_ie = [ModInt::zero(); 30]; let mut e = zeta; let mut ie = e.inv(); let mut i = cnt2; while i >= 2 { es[i - 2] = e; ies[i - 2] = ie; e = e.const_mul(e); ie = ie.const_mul(ie); i -= 1; } let mut now = ModInt::one(); let mut inow = ModInt::one(); let mut i = 0; while i < cnt2 - 1 { sum_e[i] = es[i].const_mul(now); sum_ie[i] = ies[i].const_mul(inow); now = ies[i].const_mul(now); inow = es[i].const_mul(inow); i += 1; } Self { sum_e, sum_ie } } } struct NTTPrecalcHelper; impl NTTPrecalcHelper { const A: NTTPrecalc = NTTPrecalc::new(); } pub trait ArrayAdd { type Item; fn add(&self, rhs: &[Self::Item]) -> Vec; } impl ArrayAdd for [T] where T: Zero + Copy, { type Item = T; fn add(&self, rhs: &[Self::Item]) -> Vec { let mut c = vec![T::zero(); self.len().max(rhs.len())]; c[..self.len()].copy_from_slice(self); c.add_assign(rhs); c } } pub trait ArrayAddAssign { type Item; fn add_assign(&mut self, rhs: &[Self::Item]); } impl ArrayAddAssign for [T] where T: Add + Copy, { type Item = T; fn add_assign(&mut self, rhs: &[Self::Item]) { assert!(self.len() >= rhs.len()); self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x + *a); } } impl ArrayAddAssign for Vec where T: Zero + Add + Copy, { type Item = T; fn add_assign(&mut self, rhs: &[Self::Item]) { if self.len() < rhs.len() { self.resize(rhs.len(), T::zero()); } self.as_mut_slice().add_assign(rhs); } } pub trait ArraySub { type Item; fn sub(&self, rhs: &[Self::Item]) -> Vec; } impl ArraySub for [T] where T: Zero + Sub + Copy, { type Item = T; fn sub(&self, rhs: &[Self::Item]) -> Vec { let mut c = vec![T::zero(); self.len().max(rhs.len())]; c[..self.len()].copy_from_slice(self); c.sub_assign(rhs); c } } pub trait ArraySubAssign { type Item; fn sub_assign(&mut self, rhs: &[Self::Item]); } impl ArraySubAssign for [T] where T: Sub + Copy, { type Item = T; fn sub_assign(&mut self, rhs: &[Self::Item]) { assert!(self.len() >= rhs.len()); self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x - *a); } } impl ArraySubAssign for Vec where T: Zero + Sub + Copy, { type Item = T; fn sub_assign(&mut self, rhs: &[Self::Item]) { if self.len() < rhs.len() { self.resize(rhs.len(), T::zero()); } self.as_mut_slice().sub_assign(rhs); } } pub trait ArrayDot { type Item; fn dot(&self, rhs: &[Self::Item]) -> Vec; } impl ArrayDot for [T] where T: Mul + Copy, { type Item = T; fn dot(&self, rhs: &[Self::Item]) -> Vec { assert!(self.len() == rhs.len()); self.iter().zip(rhs).map(|p| *p.0 * *p.1).collect() } } pub trait ArrayDotAssign { type Item; fn dot_assign(&mut self, rhs: &[Self::Item]); } impl ArrayDotAssign for [T] where T: MulAssign + Copy, { type Item = T; fn dot_assign(&mut self, rhs: &[Self::Item]) { assert!(self.len() == rhs.len()); self.iter_mut().zip(rhs).for_each(|(x, a)| *x *= *a); } } pub trait ArrayMul { type Item; fn mul(&self, rhs: &[Self::Item]) -> Vec; } impl ArrayMul for [T] where T: Zero + One + Copy, { type Item = T; fn mul(&self, rhs: &[Self::Item]) -> Vec { if self.is_empty() || rhs.is_empty() { return vec![]; } let mut res = vec![T::zero(); self.len() + rhs.len() - 1]; for (i, a) in self.iter().enumerate() { for (res, b) in res[i..].iter_mut().zip(rhs.iter()) { *res = *res + *a * *b; } } res } } // transform でlen=1を指定すればNTTになる pub trait ArrayConvolution { type Item; fn transform(&mut self, len: usize); fn inverse_transform(&mut self, len: usize); fn convolution(&self, rhs: &[Self::Item]) -> Vec; } impl ArrayConvolution for [ModInt<{ M }>] { type Item = ModInt<{ M }>; fn transform(&mut self, len: usize) { let f = self; let n = f.len(); let k = (n / len).trailing_zeros() as usize; assert!(len << k == n); assert!(k <= ModInt::<{ M }>::ORDER); let pre = &NTTPrecalcHelper::<{ M }>::A; for ph in 1..=k { let p = len << (k - ph); let mut now = ModInt::one(); for (i, f) in f.chunks_exact_mut(2 * p).enumerate() { let (x, y) = f.split_at_mut(p); for (x, y) in x.iter_mut().zip(y.iter_mut()) { let l = *x; let r = *y * now; *x = l + r; *y = l - r; } now *= pre.sum_e[(!i).trailing_zeros() as usize]; } } } fn inverse_transform(&mut self, len: usize) { let f = self; let n = f.len(); let k = (n / len).trailing_zeros() as usize; assert!(len << k == n); assert!(k <= ModInt::<{ M }>::ORDER); let pre = &NTTPrecalcHelper::<{ M }>::A; for ph in (1..=k).rev() { let p = len << (k - ph); let mut inow = ModInt::one(); for (i, f) in f.chunks_exact_mut(2 * p).enumerate() { let (x, y) = f.split_at_mut(p); for (x, y) in x.iter_mut().zip(y.iter_mut()) { let l = *x; let r = *y; *x = l + r; *y = (l - r) * inow; } inow *= pre.sum_ie[(!i).trailing_zeros() as usize]; } } let ik = ModInt::new(2).inv().pow(k as u64); for f in f.iter_mut() { *f *= ik; } } fn convolution(&self, rhs: &[Self::Item]) -> Vec { if self.len().min(rhs.len()) <= 32 { return self.mul(rhs); } const PARAM: usize = 10; let size = self.len() + rhs.len() - 1; let mut k = 0; while (size + (1 << k) - 1) >> k > PARAM { k += 1; } let len = (size + (1 << k) - 1) >> k; let mut f = vec![ModInt::zero(); len << k]; let mut g = vec![ModInt::zero(); len << k]; f[..self.len()].copy_from_slice(self); g[..rhs.len()].copy_from_slice(rhs); f.transform(len); g.transform(len); let mut buf = [ModInt::zero(); 2 * PARAM - 1]; let buf = &mut buf[..(2 * len - 1)]; let pre = &NTTPrecalcHelper::<{ M }>::A; let mut now = ModInt::one(); for (i, (f, g)) in f .chunks_exact_mut(2 * len) .zip(g.chunks_exact(2 * len)) .enumerate() { let mut r = now; for (f, g) in f.chunks_exact_mut(len).zip(g.chunks_exact(len)) { buf.fill(ModInt::zero()); for (i, f) in f.iter().enumerate() { for (buf, g) in buf[i..].iter_mut().zip(g.iter()) { *buf = *buf + *f * *g; } } f.copy_from_slice(&buf[..len]); for (f, buf) in f.iter_mut().zip(buf[len..].iter()) { *f = *f + r * *buf; } r = -r; } now *= pre.sum_e[(!i).trailing_zeros() as usize]; } f.inverse_transform(len); f.truncate(self.len() + rhs.len() - 1); f } } // ---------- end array op ---------- // ---------- begin matrix ---------- #[derive(Clone)] pub struct Matrix { h: usize, w: usize, a: Box<[T]>, } impl Matrix { pub fn new(h: usize, w: usize, a: Vec) -> Self { assert!(a.len() == h * w); Self { h, w, a: a.into_boxed_slice(), } } pub fn iter(&self) -> impl Iterator { self.a.chunks_exact(self.w) } pub fn iter_mut(&mut self) -> impl Iterator { self.a.chunks_exact_mut(self.w) } pub fn swap_row(&mut self, mut x: usize, mut y: usize) { assert!(x < self.h && y < self.h); if x == y { return; } if x > y { std::mem::swap(&mut x, &mut y); } let w = self.w; let (l, r) = self.a.split_at_mut(y * w); l[(x * w)..(x * w + w)].swap_with_slice(&mut r[..w]); } pub fn swap_col(&mut self, x: usize, y: usize) { assert!(x < self.w && y < self.w); for mat in self.iter_mut() { mat.swap(x, y); } } } impl Matrix where T: Clone, { pub fn to_vec(&self) -> Vec> { self.iter().map(|a| Vec::from(a)).collect() } pub fn minor(&self, x: usize, y: usize) -> Self { assert!(x < self.h && y < self.w); let mut a = vec![]; for (i, b) in self.iter().enumerate() { for (j, b) in b.iter().enumerate() { if i != x && j != y { a.push(b.clone()); } } } Self::new(self.h - 1, self.w - 1, a) } } impl Matrix where T: Add + Clone, { pub fn matadd(&self, rhs: &Self) -> Self { assert_eq!((self.h, self.w), (rhs.h, rhs.w)); let mut res = self.clone(); for (res, a) in res.a.iter_mut().zip(rhs.a.iter()) { *res = res.clone() + a.clone(); } res } } impl Matrix where T: Zero + Clone, { pub fn zero(h: usize, w: usize) -> Self { Self::new(h, w, vec![T::zero(); h * w]) } pub fn is_zero(&self) -> bool { self.a.iter().all(|a| a.is_zero()) } } impl Matrix where T: Zero + One + Clone, { pub fn one(n: usize) -> Self { let mut res = Self::new(n, n, vec![T::zero(); n * n]); for (i, res) in res.iter_mut().enumerate() { res[i] = T::one(); } res } pub fn is_one(&self) -> bool { assert!(self.h == self.w); for (i, a) in self.iter().enumerate() { for (j, a) in a.iter().enumerate() { if (i == j && !a.is_one()) || (i != j && !a.is_zero()) { return false; } } } true } } impl Matrix where T: Sub + Clone, { pub fn matsub(&self, rhs: &Self) -> Self { assert_eq!((self.h, self.w), (rhs.h, rhs.w)); let mut res = self.clone(); for (res, a) in res.a.iter_mut().zip(rhs.a.iter()) { *res = res.clone() - a.clone(); } res } } impl Matrix where T: Zero + Mul + Clone, { pub fn matmul(&self, rhs: &Self) -> Self { assert_eq!(self.w, rhs.h); let mut res = Self::new(self.h, rhs.w, vec![T::zero(); self.h * rhs.w]); for (res, a) in res.iter_mut().zip(self.iter()) { for (a, b) in a.iter().zip(rhs.iter()) { for (res, b) in res.iter_mut().zip(b.iter()) { *res = res.clone() + a.clone() * b.clone(); } } } res } } impl Matrix where T: SemiRing + Clone, { pub fn matpow(&self, mut k: usize) -> Self { assert_eq!(self.h, self.w); let n = self.h; let mut res = Self::one(n); let mut r = self.clone(); while k > 0 { if k & 1 == 1 { res = res.matmul(&r); } r = r.matmul(&r); k >>= 1; } res } } impl Matrix where T: Field + Copy + std::fmt::Debug, { pub fn gaussian_elimination(&mut self) -> (usize, T) { let mut x = 0; let mut y = 0; let mut tmp = Vec::with_capacity(self.w); let mut det = T::one(); while x < self.h && y < self.w { if let Some(pos) = (x..self.h).find(|a| !self[*a][y].is_zero()) { if x != pos { det = -det; self.swap_row(x, pos); } det = det * self[x][y]; let inv = T::one() / self[x][y]; for mat in self[x][y..].iter_mut() { *mat = *mat * inv; } tmp.clear(); tmp.extend_from_slice(&self[x]); for (i, mat) in self.iter_mut().enumerate() { if i == x { continue; } let v = mat[y]; for (mat, tmp) in mat[y..].iter_mut().zip(tmp[y..].iter()) { *mat = *mat - v * *tmp; } } x += 1; } else { det = T::zero(); } y += 1; } (x, det) } pub fn determinant(&self) -> T { assert_eq!(self.h, self.w); self.clone().gaussian_elimination().1 } pub fn inverse(&self) -> Option { assert_eq!(self.h, self.w); let n = self.h; let mut mat = Self::zero(n, 2 * n); for (i, (mat, a)) in mat.iter_mut().zip(self.iter()).enumerate() { mat[..n].copy_from_slice(a); mat[n + i] = T::one(); } let (_, det) = mat.gaussian_elimination(); if det.is_zero() { return None; } let mut a = Vec::with_capacity(n * n); for mat in mat.iter() { a.extend_from_slice(&mat[n..]); } Some(Self::new(n, n, a)) } } impl Index for Matrix { type Output = [T]; fn index(&self, x: usize) -> &Self::Output { let w = self.w; &self.a[(x * w)..((x + 1) * w)] } } impl IndexMut for Matrix { fn index_mut(&mut self, x: usize) -> &mut Self::Output { let w = self.w; &mut self.a[(x * w)..((x + 1) * w)] } } // ---------- end matrix ---------- // ---------- begin segment tree Point Update Range Query ---------- pub struct SegmentTreePURQ { n: usize, size: usize, data: Vec, e: T, op: F, } impl SegmentTreePURQ where T: Clone, F: Fn(&T, &T) -> T, { pub fn new(n: usize, e: T, op: F) -> Self { assert!(n > 0); let size = n.next_power_of_two(); let data = vec![e.clone(); 2 * size]; SegmentTreePURQ { n, size, data, e, op, } } pub fn update_tmp(&mut self, x: usize, v: T) { assert!(x < self.n); self.data[x + self.size] = v; } pub fn update_all(&mut self) { for i in (1..self.size).rev() { self.data[i] = (self.op)(&self.data[2 * i], &self.data[2 * i + 1]); } } pub fn update(&mut self, x: usize, v: T) { assert!(x < self.n); let mut x = x + self.size; self.data[x] = v; x >>= 1; while x > 0 { self.data[x] = (self.op)(&self.data[2 * x], &self.data[2 * x + 1]); x >>= 1; } } pub fn find(&self, l: usize, r: usize) -> T { assert!(l <= r && r <= self.n); if l == r { return self.e.clone(); } let mut l = self.size + l; let mut r = self.size + r; let mut x = self.e.clone(); let mut y = self.e.clone(); while l < r { if l & 1 == 1 { x = (self.op)(&x, &self.data[l]); l += 1; } if r & 1 == 1 { r -= 1; y = (self.op)(&self.data[r], &y); } l >>= 1; r >>= 1; } (self.op)(&x, &y) } pub fn max_right

(&self, l: usize, f: P) -> usize where P: Fn(&T) -> bool, { assert!(l <= self.n); assert!(f(&self.e)); if l == self.n { return self.n; } let mut l = l + self.size; let mut sum = self.e.clone(); while { l >>= l.trailing_zeros(); let v = (self.op)(&sum, &self.data[l]); if !f(&v) { while l < self.size { l <<= 1; let v = (self.op)(&sum, &self.data[l]); if f(&v) { sum = v; l += 1; } } return l - self.size; } sum = v; l += 1; l.count_ones() > 1 } {} self.n } pub fn min_left

(&self, r: usize, f: P) -> usize where P: Fn(&T) -> bool, { assert!(r <= self.n); assert!(f(&self.e)); if r == 0 { return 0; } let mut r = r + self.size; let mut sum = self.e.clone(); while { r -= 1; while r > 1 && r & 1 == 1 { r >>= 1; } let v = (self.op)(&self.data[r], &sum); if !f(&v) { while r < self.size { r = 2 * r + 1; let v = (self.op)(&self.data[r], &sum); if f(&v) { sum = v; r -= 1; } } return r + 1 - self.size; } sum = v; (r & (!r + 1)) != r } {} 0 } } // ---------- end segment tree Point Update Range Query ----------