#include #include using namespace std; using namespace atcoder; using lint = long long; using ulint = unsigned long long; using llint = __int128_t; struct edge; using graph = vector>; #define endl '\n' constexpr int INF = 1<<30; constexpr lint INF64 = 1LL<<61; constexpr lint mod107 = 1e9+7; using mint107 = modint1000000007; constexpr long mod = 998244353; using mint = modint998244353; lint ceilDiv(lint x, lint y){if(x >= 0){return (x+y-1)/y;}else{return x/y;}} lint floorDiv(lint x, lint y){if(x >= 0){return x/y;}else{return (x-y+1)/y;}} lint Sqrt(lint x) {assert(x >= 0); lint ans = sqrt(x); while(ans*ans > x)ans--; while((ans+1)*(ans+1)<=x)ans++; return ans;} lint gcd(lint a,lint b){if(a 0){int a = n%10;char b = '0' + a;string c = "";c += b;n /= 10;ans = c + ans;}}return ans;} string toString(lint n, lint k){string ans = toString(n);string tmp = "";while(ans.length() + tmp.length() < k){tmp += "0";}return tmp + ans;} vectorprime;void makePrime(lint n){prime.push_back(2);for(lint i=3;i<=n;i+=2){bool chk = true;for(lint j=0;j>19))^(t^(t>>8)) ); } struct Point { lint x, y; int quad; Point(lint X, lint Y) { x = X; y = Y; quad = getQuad(); } int getQuad() { if(x >= 0) { if(y >= 0) return 1; else return 4; } else { if(y >= 0) return 2; else return 3; } } }; bool operator<(const Point &left, const Point &right) { if(left.quad == right.quad) { return left.y * right.x < left.x * right.y; } else { return left.quad < right.quad; } } struct Frac { lint upper, lower; Frac() { Frac(0,1); } Frac(lint u, lint l) { assert(l != 0); if(u <= 0 && l < 0) { upper = -u; lower = -l; } else { upper = u; lower = l; } reduction(); } Frac(lint u) { upper = u; lower = 1; } void reduction() { if(upper != 0) { lint g = gcd(abs(upper), abs(lower)); upper /= g; lower /= g; if(lower < 0) {lower *= -1; upper *= -1; } } else { lower = 1; } } Frac operator+(const Frac &other) { lint L = lower * other.lower; lint U = upper*other.lower + lower*other.upper; return Frac(U, L); } Frac operator-(const Frac &other) { lint L = lower * other.lower; lint U = upper*other.lower - lower*other.upper; upper = U; lower = L; return Frac(U, L); } bool operator<=(const Frac &other) { return upper*other.lower <= lower*other.upper; } Frac operator*(const Frac &other) { lint L = lower * other.lower; lint U = upper * other.upper; return Frac(U, L); } Frac operator/(const Frac &other) { assert(other.upper != 0); lint L = lower * other.upper; lint U = upper * other.lower; return Frac(U, L); } }; bool operator<(const Frac &left, const Frac &right) { return left.upper*right.lower < left.lower*right.upper; } lint extGCD(lint a, lint b, lint &x, lint &y) { if (b == 0) { x = 1; y = 0; return a; } lint d = extGCD(b, a%b, y, x); y -= a/b * x; return d; } struct edge{ lint to; lint cost; }; vectordijkstra(int s, graph &g) { vecret(g.size(), INF64); priority_queue>que; que.push({-0, s}); ret[s] = 0; while(!que.empty()) { auto q = que.top(); que.pop(); for(auto&& e: g[q.second]) { if(ret[e.to] > -q.first + e.cost) { ret[e.to] = -q.first + e.cost; que.push({-ret[e.to], e.to}); } } } return ret; } vect(100001); struct S{ llint v; int len; }; S op(S l, S r) { return {l.v * t[r.len] + r.v , l.len + r.len}; } S e() { return {0,0}; } int main(){ lint n,l,q; cin >> n >> l >> q; t[0] = 1; rep(i, 100000)t[i+1] = t[i] * 29; vecs(n); vec>H(n, segtree(l)); rep(i, n) { cin >> s[i]; rep(j, l) { H[i].set(j, {s[i][j] - 'a' + 1, 1}); } } rep(qq, q) { int t; cin >> t; if(t == 1) { int k;char c,d; cin >> k >> c >> d; k--; rep(i, n) { if(s[i][k] == c) { s[i][k] = d; H[i].set(k, {d-'a'+1, 1}); } } } else { string ss; cin >> ss; llint hh = 0; for(auto c: ss) { hh *= 29; hh += c - 'a' + 1; } int ans = 0; rep(i, n) { if(hh == H[i].prod(0, ss.size()).v) ans++; } cout << ans << endl; } } }