#include #include using namespace std; using namespace atcoder; istream &operator>>(istream &is, modint &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint &a) { return os << a.val(); } istream &operator>>(istream &is, modint998244353 &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint998244353 &a) { return os << a.val(); } istream &operator>>(istream &is, modint1000000007 &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint1000000007 &a) { return os << a.val(); } typedef long long ll; typedef vector> Graph; typedef pair pii; typedef pair pll; #define FOR(i,l,r) for (int i = l;i < (int)(r); i++) #define rep(i,n) for (int i = 0;i < (int)(n); i++) #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() #define my_sort(x) sort(x.begin(), x.end()) #define my_max(x) *max_element(all(x)) #define my_min(x) *min_element(all(x)) template inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } const int INF = (1<<30) - 1; const ll LINF = (1LL<<62) - 1; const int MOD = 998244353; const int MOD2 = 1e9+7; const double PI = acos(-1); vector di = {1,0,-1,0}; vector dj = {0,1,0,-1}; #ifdef LOCAL # include # define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__) #else # define debug(...) (static_cast(0)) #endif //形式的冪級数 //https://qiita.com/gg_hatano/items/3591ddf267092c235a23 #define rep2(i, m, n) for (int i = (m); i < (n); ++i) #define drep2(i, m, n) for (int i = (m)-1; i >= (n); --i) #define drep(i, n) drep2(i, n, 0) template struct FormalPowerSeries : vector { using vector::vector; using vector::operator=; using F = FormalPowerSeries; F operator-() const { F res(*this); for (auto &e : res) e = -e; return res; } F &operator*=(const T &g) { for (auto &e : *this) e *= g; return *this; } F &operator/=(const T &g) { assert(g != T(0)); *this *= g.inv(); return *this; } F &operator+=(const F &g) { int n = (*this).size(), m = g.size(); rep(i, min(n, m)) (*this)[i] += g[i]; return *this; } F &operator-=(const F &g) { int n = (*this).size(), m = g.size(); rep(i, min(n, m)) (*this)[i] -= g[i]; return *this; } F &operator<<=(const int d) { int n = (*this).size(); (*this).insert((*this).begin(), d, 0); (*this).resize(n); return *this; } F &operator>>=(const int d) { int n = (*this).size(); (*this).erase((*this).begin(), (*this).begin() + min(n, d)); (*this).resize(n); return *this; } F inv(int d = -1) const { int n = (*this).size(); assert(n != 0 && (*this)[0] != 0); if (d == -1) d = n; assert(d > 0); F res{(*this)[0].inv()}; while (res.size() < d) { int m = size(res); F f(begin(*this), begin(*this) + min(n, 2*m)); F r(res); f.resize(2*m), internal::butterfly(f); r.resize(2*m), internal::butterfly(r); rep(i, 2*m) f[i] *= r[i]; internal::butterfly_inv(f); f.erase(f.begin(), f.begin() + m); f.resize(2*m), internal::butterfly(f); rep(i, 2*m) f[i] *= r[i]; internal::butterfly_inv(f); T iz = T(2*m).inv(); iz *= -iz; rep(i, m) f[i] *= iz; res.insert(res.end(), f.begin(), f.begin() + m); } return {res.begin(), res.begin() + d}; } // fast: FMT-friendly modulus only F &operator*=(const F &g) { int n = (*this).size(); *this = convolution(*this, g); (*this).resize(n); return *this; } F &operator/=(const F &g) { int n = (*this).size(); *this = convolution(*this, g.inv(n)); (*this).resize(n); return *this; } // // naive // F &operator*=(const F &g) { // int n = (*this).size(), m = g.size(); // drep(i, n) { // (*this)[i] *= g[0]; // rep2(j, 1, min(i+1, m)) (*this)[i] += (*this)[i-j] * g[j]; // } // return *this; // } // F &operator/=(const F &g) { // assert(g[0] != T(0)); // T ig0 = g[0].inv(); // int n = (*this).size(), m = g.size(); // rep(i, n) { // rep2(j, 1, min(i+1, m)) (*this)[i] -= (*this)[i-j] * g[j]; // (*this)[i] *= ig0; // } // return *this; // } // sparse F &operator*=(vector> g) { int n = (*this).size(); auto [d, c] = g.front(); if (d == 0) g.erase(g.begin()); else c = 0; drep(i, n) { (*this)[i] *= c; for (auto &[j, b] : g) { if (j > i) break; (*this)[i] += (*this)[i-j] * b; } } return *this; } F &operator/=(vector> g) { int n = (*this).size(); auto [d, c] = g.front(); assert(d == 0 && c != T(0)); T ic = c.inv(); g.erase(g.begin()); rep(i, n) { for (auto &[j, b] : g) { if (j > i) break; (*this)[i] -= (*this)[i-j] * b; } (*this)[i] *= ic; } return *this; } // multiply and divide (1 + cz^d) void multiply(const int d, const T c) { int n = (*this).size(); if (c == T(1)) drep(i, n-d) (*this)[i+d] += (*this)[i]; else if (c == T(-1)) drep(i, n-d) (*this)[i+d] -= (*this)[i]; else drep(i, n-d) (*this)[i+d] += (*this)[i] * c; } void divide(const int d, const T c) { int n = (*this).size(); if (c == T(1)) rep(i, n-d) (*this)[i+d] -= (*this)[i]; else if (c == T(-1)) rep(i, n-d) (*this)[i+d] += (*this)[i]; else rep(i, n-d) (*this)[i+d] -= (*this)[i] * c; } T eval(const T &a) const { T x(1), res(0); for (auto e : *this) res += e * x, x *= a; return res; } F operator*(const T &g) const { return F(*this) *= g; } F operator/(const T &g) const { return F(*this) /= g; } F operator+(const F &g) const { return F(*this) += g; } F operator-(const F &g) const { return F(*this) -= g; } F operator<<(const int d) const { return F(*this) <<= d; } F operator>>(const int d) const { return F(*this) >>= d; } F operator*(const F &g) const { return F(*this) *= g; } F operator/(const F &g) const { return F(*this) /= g; } F operator*(vector> g) const { return F(*this) *= g; } F operator/(vector> g) const { return F(*this) /= g; } }; using mint = modint998244353; using fps = FormalPowerSeries; using sfps = vector>; // (次数,係数) int main(){ cin.tie(0); ios_base::sync_with_stdio(false); int N, K; cin >> N >> K; fps F(N + 1); F[0] = 1; for(int i = 1; i <= N; i++){ sfps f = {{0, 1}, {i * (K + 1), -1}}; sfps g = {{0, 1}, {i, -1}}; F *= f; F /= g; } for(int i = 1; i <= N; i++){ cout << F[i] << (i == N ? "\n" : " "); } }