#ifndef INCLUDE_MODE #define INCLUDE_MODE // #define REACTIVE // #define USE_GETLINE #endif #ifdef INCLUDE_MAIN IN VO Solve() { CIN( ll , N , L , Q ); CIN_A( string , N , S ); using T = Mod<999182201>; RollingHash rh{ T( GetRand( 1e7 , 1e8 ) ) }; vector> bit( N ); FOR( i , 0 , N ){ bit[i].Initialise( rh.CumulativeEncode( S[i] ) ); } auto& r_power = rh.r_power(); FOR( q , 0 , Q ){ CIN( int , type ); if( type == 1 ){ CIN( ll , k ); CIN( char , c , d ); --k; FOR( i , 0 , N ){ if( S[i][k] == c ){ S[i][k] = d; bit[i].IntervalAdd( k + 1 , L , ( d - c ) * r_power[k] ); } } } else if( type == 2 ){ CIN( string , t ); auto [code,p,size] = rh.Encode( t ); int answer = 0; FOR( i , 0 , N ){ answer += code == bit[i][size]; } COUT( answer ); } } } REPEAT_MAIN(1); #else // INCLUDE_MAIN #ifdef INCLUDE_SUB // COMPAREに使用。圧縮時は削除する。 ll Naive( ll N , ll M , ll K ) { ll answer = N + M + K; return answer; } // COMPAREに使用。圧縮時は削除する。 ll Answer( ll N , ll M , ll K ) { // START_WATCH; ll answer = N + M + K; // // TLに準じる乱択や全探索。デフォルトの猶予は100.0[ms]。 // CEXPR( double , TL , 2000.0 ); // while( CHECK_WATCH( TL ) ){ // } return answer; } // 圧縮時は中身だけ削除する。 IN VO Experiment() { // CEXPR( int , bound , 10 ); // FOREQ( N , 0 , bound ){ // FOREQ( M , 0 , bound ){ // FOREQ( K , 0 , bound ){ // COUT( N , M , K , ":" , Naive( N , M , K ) ); // } // } // // cout << Naive( N ) << ",\n"[N==bound]; // } } // 圧縮時は中身だけ削除する。 IN VO SmallTest() { // CEXPR( int , bound , 10 ); // FOREQ( N , 0 , bound ){ // FOREQ( M , 0 , bound ){ // FOREQ( K , 0 , bound ){ // COMPARE( N , M , K ); // } // } // } } // 圧縮時は中身だけ削除する。 IN VO RandomTest() { // CEXPR( int , bound_N , 1e5 ); CIN_ASSERT( N , 1 , bound_N ); // CEXPR( ll , bound_M , 1e18 ); CIN_ASSERT( M , 1 , bound_M ); // CEXPR( ll , bound_K , 1e9 ); CIN_ASSERT( K , 1 , bound_K ); // COMPARE( N , M , N ); } #define INCLUDE_MAIN #include __FILE__ #else // INCLUDE_SUB #ifdef INCLUDE_LIBRARY /* AdicExhausiveSearch/BFS (11KB) c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/BreadthFirstSearch/AdicExhausiveSearch/compress.txt CommutativeDualSqrtDecomposition (6KB) c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/SqrtDecomposition/Dual/Commutative/compress.txt CoordinateCompress (3KB) c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/CoordinateCompress/compress.txt DFSOnTree (11KB) c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/DepthFirstSearch/Tree/compress.txt DifferenceSequence (9KB) c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/DifferenceSequence/compress.txt Divisor/Prime (4KB) c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Prime/Divisor/compress.txt IntervalAddBIT (9KB) c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/IntervalAdd/compress.txt IntervalMaxBIT (9KB) c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/IntervalMax/compress.txt IntervalMultiplyLazySqrtDecomposition (18KB) c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/SqrtDecomposition/LazyEvaluation/IntervalMultiply/compress.txt Knapsack (8KB) c:/Users/user/Documents/Programming/Mathematics/Combinatorial/KnapsackProblem/compress.txt MinimumCostFlow/PotentialisedDijkstra/Dijkstra (16KB) c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/Dijkstra/Potentialised/MinimumCostFlow/compress.txt Polynomial (21KB) c:/Users/user/Documents/Programming/Mathematics/Polynomial/compress.txt TwoByOneMatrix/TwoByTwoMatrix (9KB) C:/Users/user/Documents/Programming/Mathematics/LinearAlgebra/TwoByOne/compress.txt UnionFind (3KB) c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/UnionFindForest/compress.txt */ // VVV 常設でないライブラリは以下に挿入する。 #ifdef DEBUG #include "c:/Users/user/Documents/Programming/Utility/String/RollingHash/a_Body.hpp" #else TE CL RollingHash{PU:INT m_SZ;MODINT m_r;MODINT m_r_inv;VE m_r_power;IN RollingHash(MODINT r);IN CO MODINT& r()CO NE;IN CO MODINT& r_inv()CO NE;IN CO VE& r_power()CO NE;TE IN tuple Encode(CO STR& s,CO bool& reversed = false);TE tuple Encode(CO STR& s,Enum& e,CO bool& reversed = false);TE IN VE CumulativeEncode(CO STR& s,CO bool& reversed = false);TE VE CumulativeEncode(CO STR& s,Enum& e,CO bool& reversed = false);IN tuple Concatenate(CO tuple& code0,CO tuple& code1)CO;IN tuple Fold(tuple code,INT n)CO;TE IN tuple Replace(tuple code,CO INT& i,CO CHAR& c_prev,CO CHAR& c_next)CO;TE tuple Replace(tuple code,CO INT& i,CO CHAR& c_prev,CO CHAR& c_next,Enum& e)CO;TE IN INT CountContain(CO STR& s,CO tuple& code,CO bool& reversed = false);TE INT CountContain(CO STR& s,CO tuple& code,Enum& e,CO bool& reversed = false);VO CheckSZ(CO INT& SZ);TE ST IN MODINT Enumeration(CO CHAR& c);}; TE IN RollingHash::RollingHash(MODINT r):m_SZ(1),m_r(MO(r)),m_r_inv(m_r),m_r_power{1}{m_r_inv.Invert();}TE IN CO MODINT& RollingHash::r()CO NE{RE m_r;}TE IN CO MODINT& RollingHash::r_inv()CO NE{RE m_r_inv;}TE IN CO VE& RollingHash::r_power()CO NE{RE m_r_power;}TE TE IN tuple RollingHash::Encode(CO STR& s,CO bool& reversed){RE Encode(s,Enumeration,reversed);}TE TE tuple RollingHash::Encode(CO STR& s,Enum& e,CO bool& reversed){ST_AS(is_invocable_r_v);CO int SZ = s.SZ();CheckSZ(SZ + 1);MODINT AN = 0;for(int i = 0;i < SZ;i++){AN += e(s[reversed?SZ - 1 - i:i])* m_r_power[i];}RE{AN,m_r_power[SZ],SZ};}TE IN tuple RollingHash::Concatenate(CO tuple& code0,CO tuple& code1)CO{RE{get<0>(code0)+ get<0>(code1)* get<1>(code0),get<1>(code0)* get<1>(code1),get<2>(code0)+ get<2>(code1)};}TE IN tuple RollingHash::Fold(tuple code,INT n)CO{AS(n >= 0);tuple AN{0,1,0};auto&[h,p,s]= code;WH(n > 0){(n & 1)== 1?AN = Concatenate(AN,code):AN;h *= p + 1;p *= p;s += s;n >>= 1;}RE AN;}TE TE IN tuple RollingHash::Replace(tuple code,CO INT& i,CO CHAR& c_prev,CO CHAR& c_next)CO{RE Replace(code,i,c_prev,c_next,Enumeration);}TE TE tuple RollingHash::Replace(tuple code,CO INT& i,CO CHAR& c_prev,CO CHAR& c_next,Enum& e)CO{auto&[h,p,s]= code;AS(i < s);h +=(e(c_next)-= e(c_prev))*=(i < m_SZ?m_r_power[i]:r_power(m_r,i));RE MO(code);}TE TE IN VE RollingHash::CumulativeEncode(CO STR& s,CO bool& reversed){RE CumulativeEncode(s,Enumeration,reversed);}TE TE VE RollingHash::CumulativeEncode(CO STR& s,Enum& e,CO bool& reversed){ST_AS(is_invocable_r_v);CO int SZ = s.SZ();CheckSZ(SZ + 1);VE AN(SZ + 1);for(int i = 0;i < SZ;i++){AN[i + 1]= AN[i]+ e(s[reversed?SZ - 1 - i:i])* m_r_power[i];}RE AN;}TE TE IN INT RollingHash::CountContain(CO STR& s,CO tuple& code,CO bool& reversed){RE CountContain(s,code,Enumeration,reversed);}TE TE INT RollingHash::CountContain(CO STR& s,CO tuple& code,Enum& e,CO bool& reversed){ST_AS(is_invocable_r_v);CO INT SZ0 = s.SZ();CheckSZ(SZ0);CO MODINT& n = get<0>(code);CO INT& SZ1 = get<2>(code);if(SZ1 == 0){RE 1;}CheckSZ(SZ1);CO MODINT& r_power = m_r_power[SZ1 - 1];INT AN = 0;MODINT temp = 0;for(INT i = 0;i < SZ0;i++){(i < SZ1?temp += e(s[reversed?SZ0 - 1 - i:i])* m_r_power[i]:((temp -= e(s[reversed?SZ0 + SZ1 - 1 - i:i - SZ1]))*= m_r_inv)+= e(s[reversed?SZ0 - 1 - i:i])* r_power)== n?++AN:AN;}RE AN;}TE VO RollingHash::CheckSZ(CO INT& SZ){m_r_power.reserve(SZ);WH(m_SZ < SZ){m_r_power.push_back(m_r_power[m_SZ++ - 1]* m_r);}}TE TE IN MODINT RollingHash::Enumeration(CO CHAR& c){RE MODINT{c};} #endif #ifdef DEBUG #include "c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/IntervalAdd/a_Body.hpp" #else TE CL VirtualRSet:VI PU UnderlyingSet{PU:VI U Action(CO R& r,U u)= 0;IN U PW(U u,CO R& r);IN U ScalarProduct(CO R& r,U u);};TE CL RegularRSet:VI PU VirtualRSet,PU MAGMA{PU:IN RegularRSet(MAGMA magma);IN U Action(CO U& r,U u);};TE RegularRSet(MAGMA magma)-> RegularRSet,MAGMA>;TE CL AbstractRSet:VI PU VirtualRSet{PU:O_U m_o_U;IN AbstractRSet(CO R& dummy0,CO U& dummy1,O_U o_U);IN U Action(CO R& r,U u);};TE CL AbstractModule:PU AbstractRSet,PU GROUP{PU:IN AbstractModule(CO R& dummy,O_U o_U,GROUP M);};TE AbstractModule(CO R& dummy,O_U o_U,GROUP M)-> AbstractModule,O_U,GROUP>;TE CL Module:VI PU VirtualRSet,PU AdditiveGroup{PU:IN U Action(CO R& r,U u);}; TE IN RegularRSet::RegularRSet(MAGMA magma):MAGMA(MO(magma)){}TE IN AbstractRSet::AbstractRSet(CO R& dummy0,CO U& dummy1,O_U o_U):m_o_U(MO(o_U)){ST_AS(is_invocable_r_v);}TE IN AbstractModule::AbstractModule(CO R& dummy,O_U o_U,GROUP M):AbstractRSet(dummy,M.One(),MO(o_U)),GROUP(MO(M)){ST_AS(is_same_v>);}TE IN U RegularRSet::Action(CO U& r,U u){RE TH->Product(r,MO(u));}TE IN U AbstractRSet::Action(CO R& r,U u){RE m_o_U(r,MO(u));}TE IN U Module::Action(CO R& r,U u){RE MO(u *= r);}TE IN U VirtualRSet::PW(U u,CO R& r){RE Action(r,MO(u));}TE IN U VirtualRSet::ScalarProduct(CO R& r,U u){RE Action(r,MO(u));} #define SFINAE_FOR_BIT_BS enable_if_t>* TE CL AbstractBIT{PU:ABELIAN_GROUP m_M;int m_SZ;VE m_fenwick;int m_PW;IN AbstractBIT(ABELIAN_GROUP M,CRI SZ = 0);IN AbstractBIT(ABELIAN_GROUP M,CO VE& a);IN AbstractBIT& OP=(AbstractBIT&& bit);TE IN VO Initialise(CO Args&... args);IN VO Set(CRI i,CO U& u);IN AbstractBIT& OP+=(CO VE& a);VO Add(CRI i,CO U& u);IN CRI SZ()CO NE;IN U OP[](CRI i);IN U Get(CRI i);IN CO U& LSBSegmentSum(CRI j)CO;U InitialSegmentSum(CRI i_final);IN U IntervalSum(CRI i_start,CRI i_final);TE int BinarySearch(CO F& f);TE IN int BinarySearch(CRI i_start,CO F& f);IN int BinarySearch(CO U& u);IN int BinarySearch(CRI i_start,CO U& u);IN VO COruct();};TE AbstractBIT(ABELIAN_GROUP M,CO Args&... args)-> AbstractBIT,ABELIAN_GROUP>;TE CL BIT:PU AbstractBIT>{PU:TE IN BIT(CO Args&... args);};TE BIT(CO VE& a)-> BIT; TE IN AbstractBIT::AbstractBIT(ABELIAN_GROUP M,CRI SZ):m_M(MO(M)),m_SZ(SZ),m_fenwick(m_SZ + 1,m_M.Zero()),m_PW(1){COruct();}TE IN AbstractBIT::AbstractBIT(ABELIAN_GROUP M,CO VE& a):m_M(MO(M)),m_SZ(a.SZ()),m_fenwick(m_SZ + 1,m_M.Zero()),m_PW(1){COruct();for(int j = 1;j <= m_SZ;j++){U& fenwick_j = m_fenwick[j];int i = j - 1;fenwick_j = a[i];int i_lim = j -(j & -j);WH(i > i_lim){fenwick_j = m_M.Sum(MO(fenwick_j),m_fenwick[i]);i -=(i & -i);}}}TE IN VO AbstractBIT::COruct(){ST_AS(is_same_v>);WH(m_PW < m_SZ){m_PW <<= 1;}}TE TE IN BIT::BIT(CO Args&... args):AbstractBIT>(AdditiveGroup(),args...){}TE IN AbstractBIT& AbstractBIT::OP=(AbstractBIT&& bit){m_SZ = bit.m_SZ;m_fenwick = MO(bit.m_fenwick);m_PW = bit.m_PW;RE *TH;}TE TE IN VO AbstractBIT::Initialise(CO Args&... args){*TH = AbstractBIT{m_M,args...};}TE IN VO AbstractBIT::Set(CRI i,CO U& u){Add(i,m_M.Sum(m_M.Inverse(IntervalSum(i,i)),u));}TE IN AbstractBIT& AbstractBIT::OP+=(CO VE& a){AbstractBIT a_copy{m_M,a};AS(m_SZ == a_copy.m_SZ);for(int j = 1;j <= m_SZ;j++){U& fenwick_j = m_fenwick[j];fenwick_j = m_M.Sum(MO(fenwick_j),a.m_fenwick[j]);}RE *TH;}TE VO AbstractBIT::Add(CRI i,CO U& u){int j = i + 1;WH(j <= m_SZ){U& fenwick_j = m_fenwick[j];fenwick_j = m_M.Sum(MO(fenwick_j),u);j +=(j & -j);}RE;}TE IN CRI AbstractBIT::SZ()CO NE{RE m_SZ;}TE IN U AbstractBIT::OP[](CRI i){AS(i < m_SZ);RE IntervalSum(i,i);}TE IN U AbstractBIT::Get(CRI i){RE OP[](i);}TE IN CO U& AbstractBIT::LSBSegmentSum(CRI j)CO{AS(0 < j && j <= m_SZ);RE m_fenwick[j];}TE U AbstractBIT::InitialSegmentSum(CRI i_final){U sum = m_M.Zero();int j = min(i_final + 1,m_SZ);WH(j > 0){sum = m_M.Sum(MO(sum),m_fenwick[j]);j -= j & -j;}RE sum;}TE IN U AbstractBIT::IntervalSum(CRI i_start,CRI i_final){RE m_M.Sum(m_M.Inverse(InitialSegmentSum(i_start - 1)),InitialSegmentSum(i_final));}TE TE int AbstractBIT::BinarySearch(CO F& f){int j = 0;int PW = m_PW;U sum = m_M.Zero();U sum_next = sum;WH(PW > 0){int j_next = j | PW;if(j_next <= m_SZ){sum_next = m_M.Sum(MO(sum_next),m_fenwick[j_next]);if(f(sum_next,j_next - 1)){sum_next = sum;}else{sum = sum_next;j = j_next;}}PW >>= 1;}RE j;}TE TE IN int AbstractBIT::BinarySearch(CRI i_start,CO F& f){CO U u_inv = m_M.Inverse(InitialSegmentSum(i_start - 1));RE max(i_start,BinarySearch([&](CO U& sum,CRI i){RE i_start <= i && f(m_M.Sum(u_inv,sum),i);}));}TE IN int AbstractBIT::BinarySearch(CO U& u){RE BinarySearch([&](CO U& sum,CRI){RE !(sum < u);});}TE IN int AbstractBIT::BinarySearch(CRI i_start,CO U& u){RE max(i_start,BinarySearch(m_M.Sum(InitialSegmentSum(i_start - 1),u)));} TE CL AbstractIntervalAddBIT{PU:Z_MODULE m_M;AbstractBIT m_bit_0;AbstractBIT m_bit_1;AbstractIntervalAddBIT(Z_MODULE M,CRI SZ = 0);AbstractIntervalAddBIT(Z_MODULE M,CO VE& a);TE IN VO Initialise(CO Args&... args);IN VO Set(CRI i,CO U& u);IN AbstractIntervalAddBIT& OP+=(CO VE& a);IN VO Add(CRI i,CO U& u);IN VO IntervalAdd(CRI i_start,CRI i_final,CO U& u);IN CRI SZ()CO NE;IN U OP[](CRI i);IN U Get(CRI i);IN U InitialSegmentSum(CRI i_final);IN U IntervalSum(CRI i_start,CRI i_final);};TE AbstractIntervalAddBIT(Z_MODULE M)-> AbstractIntervalAddBIT,Z_MODULE>;TE CL IntervalAddBIT:PU AbstractIntervalAddBIT>{PU:TE IN IntervalAddBIT(CO Args&... args);};TE IntervalAddBIT(CO VE& a)-> IntervalAddBIT; TE AbstractIntervalAddBIT::AbstractIntervalAddBIT(Z_MODULE M,CRI SZ):m_M(MO(M)),m_bit_0(m_M,SZ),m_bit_1(m_M,SZ){}TE AbstractIntervalAddBIT::AbstractIntervalAddBIT(Z_MODULE M,CO VE& a):m_M(MO(M)),m_bit_0(m_M),m_bit_1(m_M){CO int SZ = a.SZ();VE diff(SZ,m_M.Zero());diff[0]= a[0];for(int i = 1;i < SZ;i++){diff[i]= m_M.Sum(m_M.Inverse(a[i-1]),a[i]);}m_bit_1.Initialise(diff);for(int i = 1;i < SZ;i++){U& diff_i = diff[i];diff_i = m_M.ScalarProduct(1 - i,MO(diff_i));}m_bit_0.Initialise(diff);}TE TE IN IntervalAddBIT::IntervalAddBIT(CO Args&... args):AbstractIntervalAddBIT>(Module(),args...){}TE TE IN VO AbstractIntervalAddBIT::Initialise(CO Args&... args){AbstractIntervalAddBIT temp{m_M,args...};m_bit_0 = MO(temp.m_bit_0);m_bit_1 = MO(temp.m_bit_1);}TE IN VO AbstractIntervalAddBIT::Set(CRI i,CO U& u){Add(i,m_M.Sum(m_M.Inverse(IntervalSum(i,i)),u));}TE IN AbstractIntervalAddBIT& AbstractIntervalAddBIT::OP+=(CO VE& a){AbstractIntervalAddBIT a_copy{m_M,a};m_bit_0 += a_copy.m_bit_0;m_bit_1 += a_copy.m_bit_1;RE *TH;}TE IN VO AbstractIntervalAddBIT::Add(CRI i,CO U& u){AS(0 <= i && i < SZ());IntervalAdd(i,i,u);}TE IN VO AbstractIntervalAddBIT::IntervalAdd(CRI i_start,CRI i_final,CO U& u){CO U u_inv = m_M.Inverse(u);m_bit_0.Add(i_start,m_M.ScalarProduct((i_start - 1),u_inv));m_bit_0.Add(i_final + 1,m_M.ScalarProduct(i_final,u));m_bit_1.Add(i_start,u);m_bit_1.Add(i_final + 1,u_inv);}TE IN CRI AbstractIntervalAddBIT::SZ()CO NE{RE m_bit_0.SZ();}TE IN U AbstractIntervalAddBIT::OP[](CRI i){AS(0 <= i && i < SZ());RE IntervalSum(i,i);}TE IN U AbstractIntervalAddBIT::Get(CRI i){RE OP[](i);}TE IN U AbstractIntervalAddBIT::InitialSegmentSum(CRI i_final){RE m_M.Sum(m_bit_0.InitialSegmentSum(i_final),m_M.ScalarProduct(i_final,m_bit_1.InitialSegmentSum(i_final)));}TE IN U AbstractIntervalAddBIT::IntervalSum(CRI i_start,CRI i_final){RE m_M.Sum(m_M.Inverse(InitialSegmentSum(i_start - 1)),InitialSegmentSum(i_final));} #endif // AAA 常設でないライブラリは以上に挿入する。 #define INCLUDE_SUB #include __FILE__ #else // INCLUDE_LIBRARY #ifndef DEBUG #pragma GCC optimize ( "O3" ) #pragma GCC optimize ( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if CE( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE1 ) #define ASSERT( A , MIN , MAX ) AS( ( MIN ) <= A && A <= ( MAX ) ) #define SET_ASSERT( A , MIN , MAX ) SET_LL( A ); ASSERT( A , MIN , MAX ) #define SOLVE_ONLY #define CERR( ... ) #define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL #define CERR_A( A , N ) #define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << ENDL #define CERR_ITR( A ) #define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << ENDL #endif #ifdef REACTIVE #define ENDL endl #else #define ENDL "\n" #endif #ifdef USE_GETLINE #define SET_LL( A ) { GETLINE( A ## _str ); A = stoll( A ## _str ); } #define GETLINE_SEPARATE( SEPARATOR , ... ) SOLVE_ONLY; string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ ) #define GETLINE( ... ) SOLVE_ONLY; GETLINE_SEPARATE( '\n' , __VA_ARGS__ ) #else #define SET_LL( A ) cin >> A #define CIN( LL , ... ) SOLVE_ONLY; LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ ) #define SET_A( N , ... ) SOLVE_ONLY; VariadicResize( N , __VA_ARGS__ ); FOR( VARIABLE_FOR_SET_A , 0 , N ){ VariadicSet( cin , VARIABLE_FOR_SET_A , __VA_ARGS__ ); } #define CIN_A( LL , N , ... ) VE __VA_ARGS__; SET_A( N , __VA_ARGS__ ); #endif #include using namespace std; #define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) ) #define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define FINISH_MAIN REPEAT( test_case_num ){ if CE( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" ); } Solve(); CERR( "" ); } } #define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now() #define CURRENT_TIME static_cast( chrono::duration_cast( chrono::system_clock::now() - watch ).count() / 1000.0 ) #define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 ) #define CEXPR( LL , BOUND , VALUE ) CE LL BOUND = VALUE #define SET_A_ASSERT( N , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_A , 0 , N ){ SET_ASSERT( A[VARIABLE_FOR_SET_A] , MIN , MAX ); } #define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX ) #define CIN_A_ASSERT( N , A , MIN , MAX ) vector A( N ); SET_A_ASSERT( N , A , MIN , MAX ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( decldecay_t( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( decldecay_t( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( decldecay_t( INITIAL ) VAR = INITIAL ; VAR + 1 > FINAL ; VAR -- ) #define ITR( ARRAY ) auto begin_ ## ARRAY = ARRAY .BE() , itr_ ## ARRAY = begin_ ## ARRAY , end_ ## ARRAY = ARRAY .EN() #define FOR_ITR( ARRAY ) for( ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ ) #define RUN( VAR , ... ) for( auto&& VAR : __VA_ARGS__ ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES ) #define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ) #define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); RE #define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ ); auto answer = Answer( __VA_ARGS__ ); bool match = naive == answer; COUT( "(" , #__VA_ARGS__ , ") == (" , __VA_ARGS__ , ") : Naive == " , naive , match ? "==" : "!=" , answer , "== Answer" ); if( !match ){ RE; } // 圧縮用 #define TE template #define TY typename #define US using #define ST static #define AS assert #define IN inline #define CL class #define PU public #define OP operator #define CE constexpr #define CO const #define NE noexcept #define RE return #define WH while #define VO void #define VE vector #define LI list #define BE begin #define EN end #define SZ size #define LE length #define PW Power #define MO move #define TH this #define CRI CO int& #define CRUI CO uint& #define CRL CO ll& #define VI virtual #define IS basic_istream #define OS basic_ostream #define ST_AS static_assert #define reMO_CO remove_const #define is_COructible_v is_constructible_v #define rBE rbegin #define reSZ resize // 型のエイリアス #define decldecay_t(VAR)decay_t TE US ret_t = decltype(declval()(declval()...)); TE US inner_t = TY T::type; US uint = unsigned int; US ll = long long; US ull = unsigned long long; US ld = long double; US lld = __float128; TE US T2 = pair; TE US T3 = tuple; TE US T4 = tuple; US path = pair; // 二分探索用 // EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= CO_TARGETの整数解を格納。 #define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , CO_TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \ ST_AS( ! is_same::value && ! is_same::value ); \ ll ANSWER = MINIMUM; \ { \ ll L_BS = MINIMUM; \ ll U_BS = MAXIMUM; \ ANSWER = UPDATE_ANSWER; \ ll EXPRESSION_BS; \ CO ll CO_TARGET_BS = ( CO_TARGET ); \ ll DIFFERENCE_BS; \ WH( L_BS < U_BS ){ \ DIFFERENCE_BS = ( EXPRESSION_BS = ( EXPRESSION ) ) - CO_TARGET_BS; \ CERR( "二分探索中:" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS : (" , #EXPRESSION , ") =" , EXPRESSION_BS , DIFFERENCE_BS > 0 ? ">" : DIFFERENCE_BS < 0 ? "<" : "=" , CO_TARGET_BS , "= (" , #CO_TARGET , ")" ); \ if( DIFFERENCE_BS INEQUALITY_FOR_CHECK 0 ){ \ U_BS = UPDATE_U; \ } else { \ L_BS = UPDATE_L; \ } \ ANSWER = UPDATE_ANSWER; \ } \ if( L_BS > U_BS ){ \ CERR( "二分探索失敗:" , "L_BS =" , L_BS , ">" , U_BS , "= U_BS :" , #ANSWER , ":= (" , #MAXIMUM , ") + 1 =" , MAXIMUM + 1 ); \ CERR( "二分探索マクロにミスがある可能性があります。変更前の版に戻してください。" ); \ ANSWER = MAXIMUM + 1; \ } else { \ CERR( "二分探索終了:" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS" ); \ CERR( "二分探索が成功したかを確認するために" , #EXPRESSION , "を計算します。" ); \ CERR( "成功判定が不要な場合はこの計算を削除しても構いません。" ); \ EXPRESSION_BS = ( EXPRESSION ); \ CERR( "二分探索結果: (" , #EXPRESSION , ") =" , EXPRESSION_BS , ( EXPRESSION_BS > CO_TARGET_BS ? ">" : EXPRESSION_BS < CO_TARGET_BS ? "<" : "=" ) , CO_TARGET_BS ); \ if( EXPRESSION_BS DESIRED_INEQUALITY CO_TARGET_BS ){ \ CERR( "二分探索成功:" , #ANSWER , ":=" , ANSWER ); \ } else { \ CERR( "二分探索失敗:" , #ANSWER , ":= (" , #MAXIMUM , ") + 1 =" , MAXIMUM + 1 ); \ CERR( "単調でないか、単調増加性と単調減少性を逆にしてしまったか、探索範囲内に解が存在しません。" ); \ ANSWER = MAXIMUM + 1; \ } \ } \ } \ // 単調増加の時にEXPRESSION >= CO_TARGETの最小解を格納。 #define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , >= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 ) // 単調増加の時にEXPRESSION <= CO_TARGETの最大解を格納。 #define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , > , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 ) // 単調減少の時にEXPRESSION >= CO_TARGETの最大解を格納。 #define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , < , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 ) // 単調減少の時にEXPRESSION <= CO_TARGETの最小解を格納。 #define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , <= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 ) // 尺取り法用 // VAR_TPA_LとVAR_TPA_RをINITで初期化し、VAR_TPA_RがCONTINUE_CONDITIONを満たす限り、 // 閉区間[VAR_TPA_L,VAR_TPA_R]が条件ON_CONDITIONを満たすか否かを判定し、 // trueになるかVAR_TAR_LがVAR_TAR_Rに追い付くまでVAR_TPA_Lの更新操作UPDATE_Lを繰り返し、 // その後VAR_TPA_Rの更新操作UPDATE_Rを行う。 // ON_CONDITIONがtrueとなる極大閉区間とその時点でのINFOをANSWERに格納する。 #define TPA( ANSWER , VAR_TPA , INIT , CONTINUE_CONDITION , UPDATE_L , UPDATE_R , ON_CONDITION , INFO ) \ VE> ANSWER{}; \ { \ auto init_TPA = INIT; \ decldecay_t( ANSWER.front() ) ANSWER ## _temp = { init_TPA , init_TPA , INFO }; \ auto ANSWER ## _prev = ANSWER ## _temp; \ auto& VAR_TPA ## _L = get<0>( ANSWER ## _temp ); \ auto& VAR_TPA ## _R = get<1>( ANSWER ## _temp ); \ auto& VAR_TPA ## _info = get<2>( ANSWER ## _temp ); \ bool on_TPA_prev = false; \ WH( true ){ \ bool continuing = CONTINUE_CONDITION; \ bool on_TPA = continuing && ( ON_CONDITION ); \ CERR( continuing ? "尺取り中" : "尺取り終了" , ": [L,R] = [" , VAR_TPA ## _L , "," , VAR_TPA ## _R , "] ," , on_TPA_prev ? "on" : "off" , "->" , on_TPA ? "on" : "off" , ", info =" , VAR_TPA ## _info ); \ if( on_TPA_prev && ! on_TPA ){ \ ANSWER.push_back( ANSWER ## _prev ); \ } \ if( continuing ){ \ if( on_TPA || VAR_TPA ## _L == VAR_TPA ## _R ){ \ ANSWER ## _prev = ANSWER ## _temp; \ UPDATE_R; \ } else { \ UPDATE_L; \ } \ } else { \ break; \ } \ on_TPA_prev = on_TPA; \ } \ } \ // データ構造用 TE IN T Addition(CO T& t0,CO T& t1){RE t0 + t1;} TE IN T Xor(CO T& t0,CO T& t1){RE t0 ^ t1;} TE IN T MU(CO T& t0,CO T& t1){RE t0 * t1;} TE IN CO T& Zero(){ST CO T z{};RE z;} TE IN CO T& One(){ST CO T o = 1;RE o;}TE IN T AdditionInv(CO T& t){RE -t;} TE IN T Id(CO T& v){RE v;} TE IN T Min(CO T& a,CO T& b){RE a < b?a:b;} TE IN T Max(CO T& a,CO T& b){RE a < b?b:a;} // グラフ用 TE IN auto Get(V& a){RE[&](CRI i = 0)->CO decldecay_t(a[0])&{RE a[i];};} TE IN VE id(CRI SZ){VE AN(SZ);FOR(i,0,SZ){AN[i]= i;}RE AN;} // グリッド問題用 int H,W,H_minus,W_minus,HW; VE grid; char walkable = '.',unwalkable = '#'; IN T2 EnumHW(CRI v){RE{v / W,v % W};} IN int EnumHW_inv(CO T2& ij){auto&[i,j]= ij;RE i * W + j;} CO string direction[4]={"U","R","D","L"}; IN int DirectionNumberOnGrid(CRI i,CRI j,CRI k,CRI h){RE ik?0:jh?3:(AS(false),-1);} IN int DirectionNumberOnGrid(CRI v,CRI w){auto[i,j]=EnumHW(v);auto[k,h]=EnumHW(w);RE DirectionNumberOnGrid(i,j,k,h);} IN int ReverseDirectionNumberOnGrid(CRI n){AS(0<=n&&n<4);RE(n+2)%4;} IN VE> EdgeOnGrid(CO T2& v){VE>AN{};auto[i,j]=v;if(i>0&&grid[i-1][j]==walkable){AN.push_back({i-1,j});}if(i+10&&grid[i][j-1]==walkable){AN.push_back({i,j-1});}if(j+1,ll>> WEdgeOnGrid(CO T2& v){VE,ll>>AN{};auto[i,j]=v;if(i>0&&grid[i-1][j]==walkable){AN.push_back({{i-1,j},1});}if(i+10&&grid[i][j-1]==walkable){AN.push_back({{i,j-1},1});}if(j+1& S){if(S.empty()){S.reSZ(H);}cin>>S[i];AS(int(S[i].SZ())==W);} // VVV 常設ライブラリは以下に挿入する。 #ifdef DEBUG #include "C:/Users/user/Documents/Programming/Contest/Template/include/a_Body.hpp" #else // Random(1KB) ll GetRand(CRI Rand_min,CRI Rand_max){ll AN = time(NULL);RE AN * rand()%(Rand_max + 1 - Rand_min)+ Rand_min;} // Map (2KB) #define DC_OF_HASH(...)struct hash<__VA_ARGS__>{IN size_t OP()(CO __VA_ARGS__& n)CO;}; CL is_ordered{PU:is_ordered()= delete;TE ST CE auto Check(CO T& t)-> decltype(t < t,true_type());ST CE false_type Check(...);TE ST CE CO bool value = is_same_v< decltype(Check(declval())),true_type >;}; TE US Set = conditional_t>,unordered_set,conditional_t,set,VO>>; #define DF_OF_AR_FOR_MAP(MAP,OPR)TE IN MAP& OP OPR ## =(MAP& a,CO pair& v){a[v.first]OPR ## = v.second;RE a;}TE IN MAP& OP OPR ## =(MAP& a0,CO MAP& a1){for(auto&[t,u]:a1){a0[t]OPR ## = u;}RE a0;}TE IN MAP OP OPR(MAP a,CO ARG& arg){RE MO(a OPR ## = arg);} #define DF_OF_ARS_FOR_MAP(MAP)DF_OF_AR_FOR_MAP(MAP,+);DF_OF_AR_FOR_MAP(MAP,-);DF_OF_AR_FOR_MAP(MAP,*);DF_OF_AR_FOR_MAP(MAP,/);DF_OF_AR_FOR_MAP(MAP,%); TE US Map = conditional_t>,unordered_map,conditional_t,map,VO>>; DF_OF_ARS_FOR_MAP(map);DF_OF_ARS_FOR_MAP(unordered_map); // Tuple(3KB) #define DF_OF_AR_FOR_TUPLE(OPR)TE TY V> IN auto OP OPR ## =(V& t0,CO V& t1)-> decltype((get<0>(t0),t0))&{get<0>(t0)OPR ## = get<0>(t1);get<1>(t0)OPR ## = get<1>(t1);RE t0;}TE IN tuple& OP OPR ## =(tuple& t0,CO tuple& t1){get<0>(t0)OPR ## = get<0>(t1);get<1>(t0)OPR ## = get<1>(t1);get<2>(t0)OPR ## = get<2>(t1);RE t0;}TE IN tuple& OP OPR ## =(tuple& t0,CO tuple& t1){get<0>(t0)OPR ## = get<0>(t1);get<1>(t0)OPR ## = get<1>(t1);get<2>(t0)OPR ## = get<2>(t1);get<3>(t0)OPR ## = get<3>(t1);RE t0;}TE TY V,TY...ARGS> IN auto OP OPR(CO V& t0,CO V& t1)-> decldecay_t((get<0>(t0),t0)){auto t = t0;RE MO(t OPR ## = t1);} #define DF_OF_HASH_FOR_TUPLE(PAIR)TE IN size_t hash>::OP()(CO PAIR& n)CO{ST CO size_t seed =(GetRand(1e3,1e8)<< 1)| 1;ST CO hash h0;ST CO hash h1;RE(h0(get<0>(n))* seed)^ h1(get<1>(n));} #define DF_OF_INCREMENT_FOR_TUPLE(INCR)TE TY V> IN auto OP INCR(V& t)-> decldecay_t((get<0>(t),t))&{INCR get<0>(t);INCR get<1>(t);RE t;}TE IN tuple& OP INCR(tuple& t){INCR get<0>(t);INCR get<1>(t);INCR get<2>(t);RE t;}TE IN tuple& OP INCR(tuple& t){INCR get<0>(t);INCR get<1>(t);INCR get<2>(t);INCR get<3>(t);RE t;} TE TY V> IN auto OP>>(IS& is,V& arg)-> decltype((get<0>(arg),is))&{RE is >> get<0>(arg)>> get<1>(arg);}TE IN IS& OP>>(IS& is,tuple& arg){RE is >> get<0>(arg)>> get<1>(arg)>> get<2>(arg);}TE IN IS& OP>>(IS& is,tuple& arg){RE is >> get<0>(arg)>> get<1>(arg)>> get<2>(arg)>> get<3>(arg);}TE TY V> IN auto OP<<(OS& os,CO V& arg)-> decltype((get<0>(arg),os))&{RE os << get<0>(arg)<< " " << get<1>(arg);}TE IN OS& OP<<(OS& os,CO tuple& arg){RE os << get<0>(arg)<< " " << get<1>(arg)<< " " << get<2>(arg);}TE IN OS& OP<<(OS& os,CO tuple& arg){RE os << get<0>(arg)<< " " << get<1>(arg)<< " " << get<2>(arg)<< " " << get<3>(arg);}DF_OF_AR_FOR_TUPLE(+);DF_OF_AR_FOR_TUPLE(-);DF_OF_AR_FOR_TUPLE(*);DF_OF_AR_FOR_TUPLE(/);DF_OF_AR_FOR_TUPLE(%);DF_OF_INCREMENT_FOR_TUPLE(++);DF_OF_INCREMENT_FOR_TUPLE(--); TE DC_OF_HASH(pair);TE DC_OF_HASH(tuple);TE DC_OF_HASH(tuple);TE DC_OF_HASH(tuple); DF_OF_HASH_FOR_TUPLE(pair);DF_OF_HASH_FOR_TUPLE(tuple);TE IN size_t hash>::OP()(CO tuple& n)CO{ST CO size_t seed =(GetRand(1e3,1e8)<< 1)| 1;ST CO hash> h01;ST CO hash h2;RE(h01({get<0>(n),get<1>(n)})* seed)^ h2(get<2>(n));}TE IN size_t hash>::OP()(CO tuple& n)CO{ST CO size_t seed =(GetRand(1e3,1e8)<< 1)| 1;ST CO hash> h01;ST CO hash> h23;RE(h01({get<0>(n),get<1>(n)})* seed)^ h23({get<2>(n),get<3>(n)});} // Vector(2KB) #define DF_OF_COUT_FOR_VE(V)TE IN OS& OP<<(OS& os,CO V& arg){auto BE = arg.BE(),EN = arg.EN();auto IT = BE;WH(IT != EN){(IT == BE?os:os << " ")<< *IT;IT++;}RE os;} #define DF_OF_AR_FOR_VE(V,OPR)TE IN V& OP OPR ## =(V& a,CO T& t){for(auto& s:a){s OPR ## = t;}RE a;}TE IN V& OP OPR ## =(V& a0,CO V& a1){AS(a0.SZ()<= a1.SZ());auto IT0 = a0.BE(),EN0 = a0.EN();auto IT1 = a1.BE();WH(IT0 != EN0){*(IT0++)OPR ## = *(IT1++);}RE a0;}TE IN V OP OPR(V a,CO U& u){RE MO(a OPR ## = u);} #define DF_OF_INCREMENT_FOR_VE(V,INCR)TE IN V& OP INCR(V& a){for(auto& i:a){INCR i;}RE a;} #define DF_OF_ARS_FOR_VE(V)DF_OF_AR_FOR_VE(V,+);DF_OF_AR_FOR_VE(V,-);DF_OF_AR_FOR_VE(V,*);DF_OF_AR_FOR_VE(V,/);DF_OF_AR_FOR_VE(V,%);DF_OF_INCREMENT_FOR_VE(V,++);DF_OF_INCREMENT_FOR_VE(V,--) DF_OF_COUT_FOR_VE(VE);DF_OF_COUT_FOR_VE(LI);DF_OF_COUT_FOR_VE(set);DF_OF_COUT_FOR_VE(unordered_set);DF_OF_ARS_FOR_VE(VE);DF_OF_ARS_FOR_VE(LI);IN VO VariadicResize(CRI SZ){}TE IN VO VariadicResize(CRI SZ,Arg& arg,ARGS&... args){arg.resize(SZ);VariadicResize(SZ,args...);}TE VO sort(VE& a,CO bool& reversed = false){if(reversed){ST auto comp =[](CO T& t0,CO T& t1){RE t1 < t0;};sort(a.BE(),a.EN(),comp);}else{sort(a.BE(),a.EN());}} // StdStream(1KB) TE IN IS& VariadicCin(IS& is){RE is;}TE IN IS& VariadicCin(IS& is,Arg& arg,ARGS&... args){RE VariadicCin(is >> arg,args...);}TE IN IS& VariadicSet(IS& is,CRI i){RE is;}TE IN IS& VariadicSet(IS& is,CRI i,Arg& arg,ARGS&... args){RE VariadicSet(is >> arg[i],i,args...);}TE IN IS& VariadicGetline(IS& is,CO char& separator){RE is;}TE IN IS& VariadicGetline(IS& is,CO char& separator,Arg& arg,ARGS&... args){RE VariadicGetline(getline(is,arg,separator),separator,args...);}TE IN OS& VariadicCout(OS& os,CO Arg& arg){RE os << arg;}TE IN OS& VariadicCout(OS& os,CO Arg1& arg1,CO Arg2& arg2,CO ARGS&... args){RE VariadicCout(os << arg1 << " ",arg2,args...);} // Algebra (4KB) #define DC_OF_CPOINT(POINT)IN CO U& POINT()CO NE #define DC_OF_POINT(POINT)IN U& POINT()NE #define DF_OF_CPOINT(POINT)TE IN CO U& VirtualPointedSet::POINT()CO NE{RE Point();} #define DF_OF_POINT(POINT)TE IN U& VirtualPointedSet::POINT()NE{RE Point();} TE CL UnderlyingSet{PU:US type = U;};TE CL VirtualPointedSet:VI PU UnderlyingSet{PU:VI CO U& Point()CO NE = 0;VI U& Point()NE = 0;DC_OF_CPOINT(Unit);DC_OF_CPOINT(Zero);DC_OF_CPOINT(One);DC_OF_CPOINT(Infty);DC_OF_POINT(init);DC_OF_POINT(root);};TE CL PointedSet:VI PU VirtualPointedSet{PU:U m_b_U;IN PointedSet(U b_u = U());IN CO U& Point()CO NE;IN U& Point()NE;};TE CL VirtualNSet:VI PU UnderlyingSet{PU:VI U Transfer(CO U& u)= 0;IN U Inverse(CO U& u);};TE CL AbstractNSet:VI PU VirtualNSet{PU:F_U m_f_U;IN AbstractNSet(F_U f_U);IN U Transfer(CO U& u);};TE CL VirtualMagma:VI PU UnderlyingSet{PU:VI U Product(U u0,CO U& u1)= 0;IN U Sum(U u0,CO U& u1);};TE CL AdditiveMagma:VI PU VirtualMagma{PU:IN U Product(U u0,CO U& u1);};TE CL MultiplicativeMagma:VI PU VirtualMagma{PU:IN U Product(U u0,CO U& u1);};TE CL AbstractMagma:VI PU VirtualMagma{PU:M_U m_m_U;IN AbstractMagma(M_U m_U);IN U Product(U u0,CO U& u1);}; TE IN PointedSet::PointedSet(U b_U):m_b_U(MO(b_U)){}TE IN CO U& PointedSet::Point()CO NE{RE m_b_U;}TE IN U& PointedSet::Point()NE{RE m_b_U;}DF_OF_CPOINT(Unit);DF_OF_CPOINT(Zero);DF_OF_CPOINT(One);DF_OF_CPOINT(Infty);DF_OF_POINT(init);DF_OF_POINT(root);TE IN AbstractNSet::AbstractNSet(F_U f_U):m_f_U(MO(f_U)){ST_AS(is_invocable_r_v);}TE IN U AbstractNSet::Transfer(CO U& u){RE m_f_U(u);}TE IN U VirtualNSet::Inverse(CO U& u){RE Transfer(u);}TE IN AbstractMagma::AbstractMagma(M_U m_U):m_m_U(MO(m_U)){ST_AS(is_invocable_r_v);}TE IN U AdditiveMagma::Product(U u0,CO U& u1){RE MO(u0 += u1);}TE IN U MultiplicativeMagma::Product(U u0,CO U& u1){RE MO(u0 *= u1);}TE IN U AbstractMagma::Product(U u0,CO U& u1){RE m_m_U(MO(u0),u1);}TE IN U VirtualMagma::Sum(U u0,CO U& u1){RE Product(MO(u0),u1);}TE CL VirtualMonoid:VI PU VirtualMagma,VI PU VirtualPointedSet{};TE CL AdditiveMonoid:VI PU VirtualMonoid,PU AdditiveMagma,PU PointedSet{};TE CL MultiplicativeMonoid:VI PU VirtualMonoid,PU MultiplicativeMagma,PU PointedSet{PU:IN MultiplicativeMonoid(U e_U);};TE CL AbstractMonoid:VI PU VirtualMonoid,PU AbstractMagma,PU PointedSet{PU:IN AbstractMonoid(M_U m_U,U e_U);};TE IN MultiplicativeMonoid::MultiplicativeMonoid(U e_U):PointedSet(MO(e_U)){}TE IN AbstractMonoid::AbstractMonoid(M_U m_U,U e_U):AbstractMagma(MO(m_U)),PointedSet(MO(e_U)){}TE CL VirtualGroup:VI PU VirtualMonoid,VI PU VirtualPointedSet,VI PU VirtualNSet{};TE CL AdditiveGroup:VI PU VirtualGroup,PU AdditiveMonoid{PU:IN U Transfer(CO U& u);};TE CL AbstractGroup:VI PU VirtualGroup,PU AbstractMonoid,PU AbstractNSet{PU:IN AbstractGroup(M_U m_U,U e_U,I_U i_U);};TE IN AbstractGroup::AbstractGroup(M_U m_U,U e_U,I_U i_U):AbstractMonoid(MO(m_U),MO(e_U)),AbstractNSet(MO(i_U)){}TE IN U AdditiveGroup::Transfer(CO U& u){RE -u;} // Graph (5KB) TE CL VirtualGraph:VI PU UnderlyingSet{PU:VI R1 Enumeration(CRI i)= 0;IN R2 Enumeration_inv(CO T& t);TE IN R2 Enumeration_inv(CO PATH& p);IN VO Reset();VI CRI SZ()CO NE = 0;VI E& edge()NE = 0;VI ret_t Edge(CO T& t)= 0;TE IN ret_t Edge(CO PATH& p);ST IN CO T& Vertex(CO T& t)NE;TE ST IN CO T& Vertex(CO PATH& e)NE;VI R2 Enumeration_inv_Body(CO T& t)= 0;};TE CL EdgeImplimentation:VI PU VirtualGraph{PU:int m_SZ;E m_edge;IN EdgeImplimentation(CRI SZ,E edge);IN CRI SZ()CO NE;IN E& edge()NE;IN ret_t Edge(CO T& t);};TE CL Graph:PU EdgeImplimentation{PU:IN Graph(CRI SZ,E edge);IN CRI Enumeration(CRI i);TE IN Graph GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CRI t);};TE CL EnumerationGraph:PU EdgeImplimentation,ret_t,E>{PU:Enum_T m_enum_T;Enum_T_inv m_enum_T_inv;IN EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge);IN ret_t Enumeration(CRI i);TE IN EnumerationGraph GetGraph(F edge)CO;IN ret_t Enumeration_inv_Body(CO T& t);};TE EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge)-> EnumerationGraph()(0)),Enum_T,Enum_T_inv,E>;TE CL MemorisationGraph:PU EdgeImplimentation{PU:int m_LE;VE m_memory;Map m_memory_inv;IN MemorisationGraph(CRI SZ,CO T& dummy,E edge);IN T Enumeration(CRI i);IN VO Reset();TE IN MemorisationGraph GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CO T& t);}; TE IN EdgeImplimentation::EdgeImplimentation(CRI SZ,E edge):m_SZ(SZ),m_edge(MO(edge)){ST_AS(is_COructible_v && is_COructible_v && is_invocable_v);}TE IN Graph::Graph(CRI SZ,E edge):EdgeImplimentation(SZ,MO(edge)){}TE IN EnumerationGraph::EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge):EdgeImplimentation,ret_t,E>(SZ,MO(edge)),m_enum_T(MO(enum_T)),m_enum_T_inv(MO(enum_T_inv)){}TE IN MemorisationGraph::MemorisationGraph(CRI SZ,CO T& dummy,E edge):EdgeImplimentation(SZ,MO(edge)),m_LE(),m_memory(),m_memory_inv(){ST_AS(is_invocable_v);}TE IN CRI Graph::Enumeration(CRI i){RE i;}TE IN ret_t EnumerationGraph::Enumeration(CRI i){RE m_enum_T(i);}TE IN T MemorisationGraph::Enumeration(CRI i){AS(0 <= i && i < m_LE);RE m_memory[i];}TE IN R2 VirtualGraph::Enumeration_inv(CO T& t){RE Enumeration_inv_Body(t);}TE TE IN R2 VirtualGraph::Enumeration_inv(CO PATH& p){RE Enumeration_inv_Body(get<0>(p));}TE IN CRI Graph::Enumeration_inv_Body(CRI i){RE i;}TE IN ret_t EnumerationGraph::Enumeration_inv_Body(CO T& t){RE m_enum_T_inv(t);}TE IN CRI MemorisationGraph::Enumeration_inv_Body(CO T& t){if(m_memory_inv.count(t)== 0){AS(m_LE < TH->SZ());m_memory.push_back(t);RE m_memory_inv[t]= m_LE++;}RE m_memory_inv[t];}TE VO VirtualGraph::Reset(){}TE IN VO MemorisationGraph::Reset(){m_LE = 0;m_memory.clear();m_memory_inv.clear();}TE IN CRI EdgeImplimentation::SZ()CO NE{RE m_SZ;}TE IN E& EdgeImplimentation::edge()NE{RE m_edge;}TE IN ret_t EdgeImplimentation::Edge(CO T& t){RE m_edge(t);}TE TE IN ret_t VirtualGraph::Edge(CO PATH& p){RE Edge(get<0>(p));}TE TE IN Graph Graph::GetGraph(F edge)CO{RE Graph(TH->SZ(),MO(edge));}TE TE IN EnumerationGraph EnumerationGraph::GetGraph(F edge)CO{RE EnumerationGraph(TH->SZ(),m_enum_T,m_enum_T_inv,MO(edge));}TE TE IN MemorisationGraph MemorisationGraph::GetGraph(F edge)CO{RE MemorisationGraph(TH->SZ(),MO(edge));}TE IN CO T& VirtualGraph::Vertex(CO T& t)NE{RE t;}TE TE IN CO T& VirtualGraph::Vertex(CO PATH& e)NE{RE Vertex(get<0>(e));} // ConstexprModulo (7KB) CEXPR(uint,P,998244353); #define RP Represent #define DeRP Derepresent TE CE INT RS(INT n)NE{RE MO(n < 0?((((++n)*= -1)%= M)*= -1)+= M - 1:n < INT(M)?n:n %= M);}TE CE INT& RSP(INT& n)NE{CE CO uint trunc =(1 << 23)- 1;INT n_u = n >> 23;n &= trunc;INT n_uq =(n_u / 7)/ 17;n_u -= n_uq * 119;n += n_u << 23;RE n < n_uq?n += P - n_uq:n -= n_uq;} TE CL Mod;TE CL COantsForMod{PU:COantsForMod()= delete;ST CE CO uint g_memory_bound = 1e6;ST CE CO uint g_memory_LE = M < g_memory_bound?M:g_memory_bound;ST CE uint g_M_minus = M - 1;ST CE int g_order_minus_1 = M - 2;ST CE int g_order_minus_1_neg = -g_order_minus_1;}; #define DC_OF_CM_FOR_MOD(OPR)CE bool OP OPR(CO Mod& n)CO NE #define DC_OF_AR_FOR_MOD(OPR,EX)CE Mod OP OPR(Mod n)CO EX; #define DF_OF_CM_FOR_MOD(OPR)TE CE bool Mod::OP OPR(CO Mod& n)CO NE{RE m_n OPR n.m_n;} #define DF_OF_AR_FOR_MOD(OPR,EX,LEFT,OPR2)TE CE Mod Mod::OP OPR(Mod n)CO EX{RE MO(LEFT OPR2 ## = *TH);}TE CE Mod OP OPR(T n0,CO Mod& n1)EX{RE MO(Mod(MO(n0))OPR ## = n1);} TE CL Mod{PU:uint m_n;CE Mod()NE;CE Mod(CO Mod& n)NE;CE Mod(Mod&& n)NE;TE CE Mod(T n)NE;CE Mod& OP=(Mod n)NE;CE Mod& OP+=(CO Mod& n)NE;CE Mod& OP-=(CO Mod& n)NE;CE Mod& OP*=(CO Mod& n)NE;IN Mod& OP/=(Mod n);TE CE Mod& OP<<=(INT n);TE CE Mod& OP>>=(INT n);CE Mod& OP++()NE;CE Mod OP++(int)NE;CE Mod& OP--()NE;CE Mod OP--(int)NE;DC_OF_CM_FOR_MOD(==);DC_OF_CM_FOR_MOD(!=);DC_OF_CM_FOR_MOD(<);DC_OF_CM_FOR_MOD(<=);DC_OF_CM_FOR_MOD(>);DC_OF_CM_FOR_MOD(>=);DC_OF_AR_FOR_MOD(+,NE);DC_OF_AR_FOR_MOD(-,NE);DC_OF_AR_FOR_MOD(*,NE);DC_OF_AR_FOR_MOD(/,);TE CE Mod OP^(INT EX)CO;TE CE Mod OP<<(INT n)CO;TE CE Mod OP>>(INT n)CO;CE Mod OP-()CO NE;CE Mod& SignInvert()NE;IN Mod& Invert();TE CE Mod& PW(INT EX);CE VO swap(Mod& n)NE;CE CRUI RP()CO NE;ST CE Mod DeRP(uint n)NE;ST IN CO Mod& Inverse(CRUI n);ST IN CO Mod& Factorial(CRUI n);ST IN CO Mod& FactorialInverse(CRUI n);ST IN Mod Combination(CRUI n,CRUI i);ST IN CO Mod& zero()NE;ST IN CO Mod& one()NE;TE CE Mod& PositivePW(INT EX)NE;TE CE Mod& NonNegativePW(INT EX)NE;US COants = COantsForMod;}; US MP = Mod

; TE CE Mod::Mod()NE:m_n(){}TE CE Mod::Mod(CO Mod& n)NE:m_n(n.m_n){}TE CE Mod::Mod(Mod&& n)NE:m_n(MO(n.m_n)){}TE TE CE Mod::Mod(T n)NE:m_n(RS(MO(n))){ST_AS(is_COructible_v >);}TE CE Mod& Mod::OP=(Mod n)NE{m_n = MO(n.m_n);RE *TH;}TE CE Mod& Mod::OP+=(CO Mod& n)NE{(m_n += n.m_n)< M?m_n:m_n -= M;RE *TH;}TE CE Mod& Mod::OP-=(CO Mod& n)NE{m_n < n.m_n?(m_n += M)-= n.m_n:m_n -= n.m_n;RE *TH;}TE CE Mod& Mod::OP*=(CO Mod& n)NE{m_n = MO(ull(m_n)* n.m_n)% M;RE *TH;}TE <> CE MP& MP::OP*=(CO MP& n)NE{ull m_n_copy = m_n;m_n = MO((m_n_copy *= n.m_n)< P?m_n_copy:RSP(m_n_copy));RE *TH;}TE IN Mod& Mod::OP/=(Mod n){RE OP*=(n.Invert());}TE TE CE Mod& Mod::OP<<=(INT n){AS(n >= 0);RE *TH *= Mod(2).NonNegativePW(MO(n));}TE TE CE Mod& Mod::OP>>=(INT n){AS(n >=0);WH(n-- > 0){((m_n & 1)== 0?m_n:m_n += M)>>= 1;}RE *TH;}TE CE Mod& Mod::OP++()NE{m_n < COants::g_M_minus?++m_n:m_n = 0;RE *TH;}TE CE Mod Mod::OP++(int)NE{Mod n{*TH};OP++();RE n;}TE CE Mod& Mod::OP--()NE{m_n == 0?m_n = COants::g_M_minus:--m_n;RE *TH;}TE CE Mod Mod::OP--(int)NE{Mod n{*TH};OP--();RE n;}DF_OF_CM_FOR_MOD(==);DF_OF_CM_FOR_MOD(!=);DF_OF_CM_FOR_MOD(>);DF_OF_CM_FOR_MOD(>=);DF_OF_CM_FOR_MOD(<);DF_OF_CM_FOR_MOD(<=);DF_OF_AR_FOR_MOD(+,NE,n,+);DF_OF_AR_FOR_MOD(-,NE,n.SignInvert(),+);DF_OF_AR_FOR_MOD(*,NE,n,*);DF_OF_AR_FOR_MOD(/,,n.Invert(),*);TE TE CE Mod Mod::OP^(INT EX)CO{RE MO(Mod(*TH).PW(MO(EX)));}TE TE CE Mod Mod::OP<<(INT n)CO{RE MO(Mod(*TH)<<= MO(n));}TE TE CE Mod Mod::OP>>(INT n)CO{RE MO(Mod(*TH)>>= MO(n));}TE CE Mod Mod::OP-()CO NE{RE MO(Mod(*TH).SignInvert());}TE CE Mod& Mod::SignInvert()NE{m_n > 0?m_n = M - m_n:m_n;RE *TH;}TE IN Mod& Mod::Invert(){AS(m_n != 0);uint m_n_neg;RE m_n < COants::g_memory_LE?(m_n = Inverse(m_n).m_n,*TH):((m_n_neg = M - m_n)< COants::g_memory_LE)?(m_n = M - Inverse(m_n_neg).m_n,*TH):NonNegativePW(COants::g_order_minus_1);}TE TE CE Mod& Mod::PositivePW(INT EX)NE{Mod PW{*TH};EX--;WH(EX != 0){(EX & 1)== 1?*TH *= PW:*TH;EX >>= 1;PW *= PW;}RE *TH;}TE TE CE Mod& Mod::NonNegativePW(INT EX)NE{RE EX == 0?(m_n = 1,*TH):PositivePW(MO(EX));}TE TE CE Mod& Mod::PW(INT EX){bool neg = EX < 0;AS(!(neg && m_n == 0));RE neg?PositivePW(MO(EX *= COants::g_order_minus_1_neg)):NonNegativePW(MO(EX));}TE CE VO Mod::swap(Mod& n)NE{std::swap(m_n,n.m_n);}TE IN CO Mod& Mod::Inverse(CRUI n){AS(n < COants::g_memory_LE);ST Mod memory[COants::g_memory_LE]={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr].m_n = M - memory[M % LE_curr].m_n * ull(M / LE_curr)% M;LE_curr++;}RE memory[n];}TE IN CO Mod& Mod::Factorial(CRUI n){if(M <= n){RE zero();}AS(n < COants::g_memory_LE);ST Mod memory[COants::g_memory_LE]={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){(memory[LE_curr]= memory[LE_curr - 1])*= LE_curr;LE_curr++;}RE memory[n];}TE IN CO Mod& Mod::FactorialInverse(CRUI n){ST Mod memory[COants::g_memory_LE]={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){(memory[LE_curr]= memory[LE_curr - 1])*= Inverse(LE_curr);LE_curr++;}RE memory[n];}TE IN Mod Mod::Combination(CRUI n,CRUI i){RE i <= n?Factorial(n)* FactorialInverse(i)* FactorialInverse(n - i):zero();}TE CE CRUI Mod::RP()CO NE{RE m_n;}TE CE Mod Mod::DeRP(uint n)NE{Mod n_copy{};n_copy.m_n = MO(n);RE n_copy;}TE IN CO Mod& Mod::zero()NE{ST CE CO Mod z{};RE z;}TE IN CO Mod& Mod::one()NE{ST CE CO Mod o{1};RE o;}TE IN Mod Inverse(CO Mod& n){RE MO(Mod(n).Invert());}TE CE Mod PW(Mod n,INT EX){RE MO(n.PW(MO(EX)));}TE CE VO swap(Mod& n0,Mod& n1)NE{n0.swap(n1);}TE IN string to_string(CO Mod& n)NE{RE to_string(n.RP())+ " + " + to_string(M)+ "Z";}TE IN basic_istream& OP>>(basic_istream& is,Mod& n){ll m;is >> m;n = m;RE is;}TE IN basic_ostream& OP<<(basic_ostream& os,CO Mod& n){RE os << n.RP();} #define DF_OF_HASH_FOR_MOD(MOD)IN size_t hash::OP()(CO MOD& n)CO{ST CO hash h;RE h(n.RP());} TE DC_OF_HASH(Mod); TE DF_OF_HASH_FOR_MOD(Mod); #endif // AAA 常設ライブラリは以上に挿入する。 #define INCLUDE_LIBRARY #include __FILE__ #endif // INCLUDE_LIBRARY #endif // INCLUDE_SUB #endif // INCLUDE_MAIN