#line 1 "test/yuki/yuki_1796.test.cpp" #define PROBLEM "https://yukicoder.me/problems/no/1796" #line 2 "fps/middle_product.hpp" #include #include #include #include #include #line 2 "convolution/ntt.hpp" #line 4 "convolution/ntt.hpp" #include #line 8 "convolution/ntt.hpp" #line 2 "math/internal_math.hpp" #line 4 "math/internal_math.hpp" namespace ebi { namespace internal { constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; if (m == 880803841) return 26; if (m == 924844033) return 5; return -1; } template constexpr int primitive_root = primitive_root_constexpr(m); } // namespace internal } // namespace ebi #line 2 "template/int_alias.hpp" #include namespace ebi { using ld = long double; using std::size_t; using i8 = std::int8_t; using u8 = std::uint8_t; using i16 = std::int16_t; using u16 = std::uint16_t; using i32 = std::int32_t; using u32 = std::uint32_t; using i64 = std::int64_t; using u64 = std::uint64_t; using i128 = __int128_t; using u128 = __uint128_t; } // namespace ebi #line 2 "modint/base.hpp" #include #include #include namespace ebi { template concept Modint = requires(T a, T b) { a + b; a - b; a * b; a / b; a.inv(); a.val(); a.pow(std::declval()); T::mod(); }; template std::istream &operator>>(std::istream &os, mint &a) { long long x; os >> x; a = x; return os; } template std::ostream &operator<<(std::ostream &os, const mint &a) { return os << a.val(); } } // namespace ebi #line 12 "convolution/ntt.hpp" namespace ebi { namespace internal { template > struct ntt_info { static constexpr int rank2 = std::countr_zero((unsigned int)(mint::mod() - 1)); std::array root, inv_root; ntt_info() { root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2); inv_root[rank2] = root[rank2].inv(); for (int i = rank2 - 1; i >= 0; i--) { root[i] = root[i + 1] * root[i + 1]; inv_root[i] = inv_root[i + 1] * inv_root[i + 1]; } } }; template void fft2(std::vector& a) { static const ntt_info info; int n = int(a.size()); int bit_size = std::countr_zero(a.size()); assert(n == 1 << bit_size); for (int bit = bit_size - 1; bit >= 0; bit--) { int m = 1 << bit; for (int i = 0; i < n; i += 2 * m) { mint w = 1; for (int j = 0; j < m; j++) { mint p1 = a[i + j]; mint p2 = a[i + j + m]; a[i + j] = p1 + p2; a[i + j + m] = (p1 - p2) * w; w *= info.root[bit + 1]; } } } } template void ifft2(std::vector& a) { static const ntt_info info; int n = int(a.size()); int bit_size = std::countr_zero(a.size()); assert(n == 1 << bit_size); for (int bit = 0; bit < bit_size; bit++) { for (int i = 0; i < n / (1 << (bit + 1)); i++) { mint w = 1; for (int j = 0; j < (1 << bit); j++) { int idx = i * (1 << (bit + 1)) + j; int jdx = idx + (1 << bit); mint p1 = a[idx]; mint p2 = w * a[jdx]; a[idx] = p1 + p2; a[jdx] = p1 - p2; w *= info.inv_root[bit + 1]; } } } } template void fft4(std::vector& a) { static const ntt_info info; const u32 mod = mint::mod(); const u64 iw = info.root[2].val(); int n = int(a.size()); int bit_size = std::countr_zero(a.size()); assert(n == 1 << bit_size); int len = bit_size; while (len > 0) { if (len == 1) { for (int i = 0; i < n; i += 2) { mint p0 = a[i]; mint p1 = a[i + 1]; a[i] = p0 + p1; a[i + 1] = p0 - p1; } len--; } else { int m = 1 << (len - 2); u64 w1 = 1, w2 = 1, w3 = 1, iw1 = iw, iw3 = iw; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j += 4 * m) { int i0 = i + j, i1 = i0 + m, i2 = i1 + m, i3 = i2 + m; u32 a0 = a[i0].val(); u32 a1 = a[i1].val(); u32 a2 = a[i2].val(); u32 a3 = a[i3].val(); u32 a0_plus_a2 = a0 + a2; u32 a1_plus_a3 = a1 + a3; u32 a0_minus_a2 = a0 + mod - a2; u32 a1_minus_a3 = a1 + mod - a3; a[i0] = a0_plus_a2 + a1_plus_a3; a[i1] = a0_minus_a2 * w1 + a1_minus_a3 * iw1; a[i2] = (a0_plus_a2 + 2 * mod - a1_plus_a3) * w2; a[i3] = a0_minus_a2 * w3 + (2 * mod - a1_minus_a3) * iw3; } w1 = w1 * info.root[len].val() % mod; w2 = w1 * w1 % mod; w3 = w2 * w1 % mod; iw1 = iw * w1 % mod; iw3 = iw * w3 % mod; } len -= 2; } } } template void ifft4(std::vector& a) { static const ntt_info info; const u32 mod = mint::mod(); const u64 mod2 = u64(mod) * mod; const u64 iw = info.inv_root[2].val(); int n = int(a.size()); int bit_size = std::countr_zero(a.size()); assert(n == 1 << bit_size); int len = (bit_size & 1 ? 1 : 2); while (len <= bit_size) { if (len == 1) { for (int i = 0; i < n; i += 2) { mint a0 = a[i]; mint a1 = a[i + 1]; a[i] = a0 + a1; a[i + 1] = a0 - a1; } } else { int m = 1 << (len - 2); u64 w1 = 1, w2 = 1, w3 = 1, iw1 = iw, iw3 = iw; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j += 4 * m) { int i0 = i + j, i1 = i0 + m, i2 = i1 + m, i3 = i2 + m; u64 a0 = a[i0].val(); u64 a1 = w1 * a[i1].val(); u64 a2 = w2 * a[i2].val(); u64 a3 = w3 * a[i3].val(); u64 b1 = iw1 * a[i1].val(); u64 b3 = iw3 * a[i3].val(); u64 a0_plus_a2 = a0 + a2; u64 a1_plus_a3 = a1 + a3; u64 a0_minus_a2 = a0 + mod2 - a2; u64 b1_minus_b3 = b1 + mod2 - b3; a[i0] = a0_plus_a2 + a1_plus_a3; a[i1] = a0_minus_a2 + b1_minus_b3; a[i2] = a0_plus_a2 + mod2 * 2 - a1_plus_a3; a[i3] = a0_minus_a2 + mod2 * 2 - b1_minus_b3; } w1 = w1 * info.inv_root[len].val() % mod; w2 = w1 * w1 % mod; w3 = w2 * w1 % mod; iw1 = iw * w1 % mod; iw3 = iw * w3 % mod; } } len += 2; } } } // namespace internal } // namespace ebi #line 11 "fps/middle_product.hpp" namespace ebi { template std::vector middle_product(const std::vector &a, const std::vector &b) { assert(a.size() >= b.size()); if (std::min(a.size() - b.size() + 1, b.size()) <= 60) { return middle_product_naive(a, b); } int n = std::bit_ceil(a.size()); std::vector fa(n), fb(n); std::copy(a.begin(), a.end(), fa.begin()); std::copy(b.rbegin(), b.rend(), fb.begin()); internal::fft4(fa); internal::fft4(fb); for (int i = 0; i < n; i++) { fa[i] *= fb[i]; } internal::ifft4(fa); mint inv_n = mint(n).inv(); for (auto &x : fa) { x *= inv_n; } fa.resize(a.size()); fa.erase(fa.begin(), fa.begin() + b.size() - 1); return fa; } template std::vector middle_product_naive(const std::vector &a, const std::vector &b) { int n = (int)a.size(); int m = (int)b.size(); assert(n >= m); std::vector c(n - m + 1, 0); for (int i : std::views::iota(0, n - m + 1)) { for (int j : std::views::iota(0, m)) { c[i] += b[j] * a[i + j]; } } return c; } } // namespace ebi #line 2 "graph/base.hpp" #line 7 "graph/base.hpp" #line 2 "data_structure/simple_csr.hpp" #line 6 "data_structure/simple_csr.hpp" namespace ebi { template struct simple_csr { simple_csr() = default; simple_csr(int n, const std::vector>& elements) : start(n + 1, 0), elist(elements.size()) { for (auto e : elements) { start[e.first + 1]++; } for (auto i : std::views::iota(0, n)) { start[i + 1] += start[i]; } auto counter = start; for (auto [i, e] : elements) { elist[counter[i]++] = e; } } simple_csr(const std::vector>& es) : start(es.size() + 1, 0) { int n = es.size(); for (auto i : std::views::iota(0, n)) { start[i + 1] = (int)es[i].size() + start[i]; } elist.resize(start.back()); for (auto i : std::views::iota(0, n)) { std::copy(es[i].begin(), es[i].end(), elist.begin() + start[i]); } } int size() const { return (int)start.size() - 1; } const auto operator[](int i) const { return std::ranges::subrange(elist.begin() + start[i], elist.begin() + start[i + 1]); } auto operator[](int i) { return std::ranges::subrange(elist.begin() + start[i], elist.begin() + start[i + 1]); } const auto operator()(int i, int l, int r) const { return std::ranges::subrange(elist.begin() + start[i] + l, elist.begin() + start[i + 1] + r); } auto operator()(int i, int l, int r) { return std::ranges::subrange(elist.begin() + start[i] + l, elist.begin() + start[i + 1] + r); } private: std::vector start; std::vector elist; }; } // namespace ebi #line 9 "graph/base.hpp" namespace ebi { template struct Edge { int from, to; T cost; int id; }; template struct Graph { using cost_type = E; using edge_type = Edge; Graph(int n_) : n(n_) {} Graph() = default; void add_edge(int u, int v, cost_type c) { buff.emplace_back(u, edge_type{u, v, c, m}); edges.emplace_back(edge_type{u, v, c, m++}); } void add_undirected_edge(int u, int v, cost_type c) { buff.emplace_back(u, edge_type{u, v, c, m}); buff.emplace_back(v, edge_type{v, u, c, m}); edges.emplace_back(edge_type{u, v, c, m}); m++; } void read_tree(int offset = 1, bool is_weighted = false) { read_graph(n - 1, offset, false, is_weighted); } void read_parents(int offset = 1) { for (auto i : std::views::iota(1, n)) { int p; std::cin >> p; p -= offset; add_undirected_edge(p, i, 1); } build(); } void read_graph(int e, int offset = 1, bool is_directed = false, bool is_weighted = false) { for (int i = 0; i < e; i++) { int u, v; std::cin >> u >> v; u -= offset; v -= offset; if (is_weighted) { cost_type c; std::cin >> c; if (is_directed) { add_edge(u, v, c); } else { add_undirected_edge(u, v, c); } } else { if (is_directed) { add_edge(u, v, 1); } else { add_undirected_edge(u, v, 1); } } } build(); } void build() { assert(!prepared); csr = simple_csr(n, buff); buff.clear(); prepared = true; } int size() const { return n; } int node_number() const { return n; } int edge_number() const { return m; } edge_type get_edge(int i) const { return edges[i]; } std::vector get_edges() const { return edges; } const auto operator[](int i) const { return csr[i]; } auto operator[](int i) { return csr[i]; } private: int n, m = 0; std::vector> buff; std::vector edges; simple_csr csr; bool prepared = false; }; } // namespace ebi #line 2 "math/binomial.hpp" #line 9 "math/binomial.hpp" #line 11 "math/binomial.hpp" namespace ebi { template struct Binomial { private: static void extend(int len = -1) { int sz = (int)fact.size(); if (len < 0) len = 2 * sz; else if (len <= sz) return; else len = std::max(2 * sz, (int)std::bit_ceil(std::uint32_t(len))); len = std::min(len, mint::mod()); assert(sz <= len); fact.resize(len); inv_fact.resize(len); for (int i : std::views::iota(sz, len)) { fact[i] = fact[i - 1] * i; } inv_fact[len - 1] = fact[len - 1].inv(); for (int i : std::views::iota(sz, len) | std::views::reverse) { inv_fact[i - 1] = inv_fact[i] * i; } } public: Binomial() = default; Binomial(int n) { extend(n + 1); } static mint f(int n) { if (n >= (int)fact.size()) [[unlikely]] { extend(n + 1); } return fact[n]; } static mint inv_f(int n) { if (n >= (int)fact.size()) [[unlikely]] { extend(n + 1); } return inv_fact[n]; } static mint c(int n, int r) { if (r < 0 || n < r) return 0; return f(n) * inv_f(r) * inv_f(n - r); } static mint neg_c(int k, int d) { assert(d > 0); return c(k + d - 1, d - 1); } static mint p(int n, int r) { if (r < 0 || n < r) return 0; return f(n) * inv_f(n - r); } static mint inv(int n) { return inv_f(n) * f(n - 1); } static void reserve(int n) { extend(n + 1); } private: static std::vector fact, inv_fact; }; template std::vector Binomial::fact = std::vector(2, 1); template std::vector Binomial::inv_fact = std::vector(2, 1); } // namespace ebi #line 2 "modint/modint.hpp" #line 5 "modint/modint.hpp" #line 7 "modint/modint.hpp" namespace ebi { template struct static_modint { private: using modint = static_modint; public: static constexpr int mod() { return m; } static constexpr modint raw(int v) { modint x; x._v = v; return x; } constexpr static_modint() : _v(0) {} template constexpr static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template constexpr static_modint(T v) { _v = v % umod(); } constexpr unsigned int val() const { return _v; } constexpr unsigned int value() const { return val(); } constexpr modint &operator++() { _v++; if (_v == umod()) _v = 0; return *this; } constexpr modint &operator--() { if (_v == 0) _v = umod(); _v--; return *this; } constexpr modint operator++(int) { modint res = *this; ++*this; return res; } constexpr modint operator--(int) { modint res = *this; --*this; return res; } constexpr modint &operator+=(const modint &rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } constexpr modint &operator-=(const modint &rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } constexpr modint &operator*=(const modint &rhs) { unsigned long long x = _v; x *= rhs._v; _v = (unsigned int)(x % (unsigned long long)umod()); return *this; } constexpr modint &operator/=(const modint &rhs) { return *this = *this * rhs.inv(); } constexpr modint operator+() const { return *this; } constexpr modint operator-() const { return modint() - *this; } constexpr modint pow(long long n) const { assert(0 <= n); modint x = *this, res = 1; while (n) { if (n & 1) res *= x; x *= x; n >>= 1; } return res; } constexpr modint inv() const { assert(_v); return pow(umod() - 2); } friend modint operator+(const modint &lhs, const modint &rhs) { return modint(lhs) += rhs; } friend modint operator-(const modint &lhs, const modint &rhs) { return modint(lhs) -= rhs; } friend modint operator*(const modint &lhs, const modint &rhs) { return modint(lhs) *= rhs; } friend modint operator/(const modint &lhs, const modint &rhs) { return modint(lhs) /= rhs; } friend bool operator==(const modint &lhs, const modint &rhs) { return lhs.val() == rhs.val(); } friend bool operator!=(const modint &lhs, const modint &rhs) { return !(lhs == rhs); } private: unsigned int _v = 0; static constexpr unsigned int umod() { return m; } }; using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; } // namespace ebi #line 1 "template/template.hpp" #include #define rep(i, a, n) for (int i = (int)(a); i < (int)(n); i++) #define rrep(i, a, n) for (int i = ((int)(n)-1); i >= (int)(a); i--) #define Rep(i, a, n) for (i64 i = (i64)(a); i < (i64)(n); i++) #define RRep(i, a, n) for (i64 i = ((i64)(n)-i64(1)); i >= (i64)(a); i--) #define all(v) (v).begin(), (v).end() #define rall(v) (v).rbegin(), (v).rend() #line 2 "template/debug_template.hpp" #line 4 "template/debug_template.hpp" namespace ebi { #ifdef LOCAL #define debug(...) \ std::cerr << "LINE: " << __LINE__ << " [" << #__VA_ARGS__ << "]:", \ debug_out(__VA_ARGS__) #else #define debug(...) #endif void debug_out() { std::cerr << std::endl; } template void debug_out(Head h, Tail... t) { std::cerr << " " << h; if (sizeof...(t) > 0) std::cerr << " :"; debug_out(t...); } } // namespace ebi #line 2 "template/io.hpp" #line 5 "template/io.hpp" #include #line 7 "template/io.hpp" namespace ebi { template std::ostream &operator<<(std::ostream &os, const std::pair &pa) { return os << pa.first << " " << pa.second; } template std::istream &operator>>(std::istream &os, std::pair &pa) { return os >> pa.first >> pa.second; } template std::ostream &operator<<(std::ostream &os, const std::vector &vec) { for (std::size_t i = 0; i < vec.size(); i++) os << vec[i] << (i + 1 == vec.size() ? "" : " "); return os; } template std::istream &operator>>(std::istream &os, std::vector &vec) { for (T &e : vec) std::cin >> e; return os; } template std::ostream &operator<<(std::ostream &os, const std::optional &opt) { if (opt) { os << opt.value(); } else { os << "invalid value"; } return os; } void fast_io() { std::cout << std::fixed << std::setprecision(15); std::cin.tie(nullptr); std::ios::sync_with_stdio(false); } } // namespace ebi #line 2 "template/utility.hpp" #line 5 "template/utility.hpp" #line 8 "template/utility.hpp" namespace ebi { template inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } template T safe_ceil(T a, T b) { if (a % b == 0) return a / b; else if (a >= 0) return (a / b) + 1; else return -((-a) / b); } template T safe_floor(T a, T b) { if (a % b == 0) return a / b; else if (a >= 0) return a / b; else return -((-a) / b) - 1; } constexpr i64 LNF = std::numeric_limits::max() / 4; constexpr int INF = std::numeric_limits::max() / 2; const std::vector dy = {1, 0, -1, 0, 1, 1, -1, -1}; const std::vector dx = {0, 1, 0, -1, 1, -1, 1, -1}; } // namespace ebi #line 2 "tree/centroid_decomposition.hpp" #line 7 "tree/centroid_decomposition.hpp" namespace ebi { namespace internal { template void centroid_decomposition_dfs_naive(const std::vector &par, const std::vector &original_vs, F f) { const int n = (int)par.size(); assert(par.size() == original_vs.size()); int center = -1; std::vector sz(n, 1); for (const int v : std::views::iota(0, n) | std::views::reverse) { if (sz[v] >= (n + 1) / 2) { center = v; break; } sz[par[v]] += sz[v]; } std::vector color(n, -1); std::vector vs = {center}; color[center] = 0; int c = 1; for (const int v : std::views::iota(1, n)) { if (par[v] == center) { vs.emplace_back(v); color[v] = c++; } } if (center > 0) { for (int v = par[center]; v != -1; v = par[v]) { vs.emplace_back(v); color[v] = c; } c++; } for (const int v : std::views::iota(0, n)) { if (color[v] == -1) { vs.emplace_back(v); color[v] = color[par[v]]; } } std::vector index_ptr(c + 1, 0); for (const int v : std::views::iota(0, n)) { index_ptr[color[v] + 1]++; } for (const int i : std::views::iota(0, c)) { index_ptr[i + 1] += index_ptr[i]; } auto counter = index_ptr; std::vector ord(n); for (auto v : vs) { ord[counter[color[v]]++] = v; } std::vector relabel(n); for (const int v : std::views::iota(0, n)) { relabel[ord[v]] = v; } std::vector original_vs2(n); for (const int v : std::views::iota(0, n)) { original_vs2[relabel[v]] = original_vs[v]; } std::vector relabel_par(n, -1); for (int v : std::views::iota(1, n)) { int a = relabel[v]; int b = relabel[par[v]]; if (a > b) std::swap(a, b); relabel_par[b] = a; } f(relabel_par, original_vs2, index_ptr); for (const int i : std::views::iota(1, c)) { int l = index_ptr[i], r = index_ptr[i + 1]; std::vector par1(r - l, -1); std::vector original_vs1(r - l, -1); for (int v : std::views::iota(l, r)) { par1[v - l] = (relabel_par[v] == 0 ? -1 : relabel_par[v] - l); original_vs1[v - l] = original_vs2[v]; } centroid_decomposition_dfs_naive(par1, original_vs1, f); } return; } template void one_third_centroid_decomposition(const std::vector &par, const std::vector &original_vs, F f) { const int n = (int)par.size(); assert(n > 1); if (n == 2) return; int center = -1; std::vector sz(n, 1); for (const int v : std::views::iota(0, n) | std::views::reverse) { if (sz[v] >= (n + 1) / 2) { center = v; break; } sz[par[v]] += sz[v]; } std::vector color(n, -1); std::vector ord(n, -1); ord[center] = 0; int t = 1; int red = n - sz[center]; for (int v = par[center]; v != -1; v = par[v]) { ord[v] = t++; color[v] = 0; } for (const int v : std::views::iota(1, n)) { if (par[v] == center && 3 * (red + sz[v]) <= 2 * (n - 1)) { red += sz[v]; ord[v] = t++; color[v] = 0; } } for (const int v : std::views::iota(1, n)) { if (v != center && color[v] == -1 && color[par[v]] == 0) { ord[v] = t++; color[v] = 0; } } const int n0 = t - 1; for (const int v : std::views::iota(1, n)) { if (v != center && color[v] == -1) { ord[v] = t++; color[v] = 1; } } assert(t == n); const int n1 = n - 1 - n0; std::vector par0(n0 + 1, -1), par1(n1 + 1, -1), par2(n, -1); std::vector original_vs0(n0 + 1), original_vs1(n1 + 1), original_vs2(n); for (const int i : std::views::iota(0, n)) { int v = ord[i]; original_vs2[v] = original_vs[i]; if (color[i] != 1) { original_vs0[v] = original_vs[i]; } if (color[i] != 0) { int idx = std::max(v - n0, 0); original_vs1[idx] = original_vs[i]; } } for (const int v : std::views::iota(1, n)) { int a = ord[v], b = ord[par[v]]; if (a > b) std::swap(a, b); par2[b] = a; if (color[v] != 1 && color[par[v]] != 1) { par0[b] = a; } if (color[v] != 0 && color[par[v]] != 0) { par1[b - n0] = std::max(a - n0, 0); } } f(par2, original_vs2, n0, n1); one_third_centroid_decomposition(par0, original_vs0, f); one_third_centroid_decomposition(par1, original_vs1, f); return; } template void one_third_centroid_decomposition_virtual_real( const std::vector &par, const std::vector &original_vs, const std::vector &is_real, F f) { const int n = (int)par.size(); assert(n > 1); if (n == 2) { if (is_real[0] && is_real[1]) { f(par, original_vs, {0, 1}); } return; } int center = -1; std::vector sz(n, 1); for (const int v : std::views::iota(0, n) | std::views::reverse) { if (sz[v] >= (n + 1) / 2) { center = v; break; } sz[par[v]] += sz[v]; } std::vector color(n, -1); std::vector ord(n, -1); ord[center] = 0; int t = 1; int red = n - sz[center]; for (int v = par[center]; v != -1; v = par[v]) { ord[v] = t++; color[v] = 0; } for (const int v : std::views::iota(1, n)) { if (par[v] == center && 3 * (red + sz[v]) <= 2 * (n - 1)) { red += sz[v]; ord[v] = t++; color[v] = 0; } } for (const int v : std::views::iota(1, n)) { if (v != center && color[v] == -1 && color[par[v]] == 0) { ord[v] = t++; color[v] = 0; } } const int n0 = t - 1; for (const int v : std::views::iota(1, n)) { if (v != center && color[v] == -1) { ord[v] = t++; color[v] = 1; } } assert(t == n); const int n1 = n - 1 - n0; std::vector par0(n0 + 1, -1), par1(n1 + 1, -1), par2(n, -1); std::vector original_vs0(n0 + 1), original_vs1(n1 + 1), original_vs2(n); std::vector is_real0(n0 + 1), is_real1(n1 + 1), is_real2(n); for (const int i : std::views::iota(0, n)) { int v = ord[i]; original_vs2[v] = original_vs[i]; is_real2[v] = is_real[i]; if (color[i] != 1) { original_vs0[v] = original_vs[i]; is_real0[v] = is_real[i]; } if (color[i] != 0) { int idx = std::max(v - n0, 0); original_vs1[idx] = original_vs[i]; is_real1[idx] = is_real[i]; } } for (const int v : std::views::iota(1, n)) { int a = ord[v], b = ord[par[v]]; if (a > b) std::swap(a, b); par2[b] = a; if (color[v] != 1 && color[par[v]] != 1) { par0[b] = a; } if (color[v] != 0 && color[par[v]] != 0) { par1[b - n0] = std::max(a - n0, 0); } } if (is_real[center]) { color.assign(n, -1); color[0] = 0; for (const int v : std::views::iota(1, n)) { if (is_real2[v]) color[v] = 1; } f(par2, original_vs2, color); is_real0[0] = is_real1[0] = is_real2[0] = 0; } color.assign(n, -1); for (const int v : std::views::iota(1, n)) { if (is_real2[v]) { color[v] = int(v > n0); } } f(par2, original_vs2, color); one_third_centroid_decomposition_virtual_real(par0, original_vs0, is_real0, f); one_third_centroid_decomposition_virtual_real(par1, original_vs1, is_real1, f); return; } } // namespace internal template void centroid_decomposition(const Graph &tree, F f) { int n = (int)tree.size(); if (n == 1) return; std::vector bfs_order(n), par(n, -1); bfs_order[0] = 0; int l = 0, r = 1; while (l < r) { int v = bfs_order[l++]; for (auto e : tree[v]) { int nv = e.to; if (nv == par[v]) continue; bfs_order[r++] = nv; par[nv] = v; } } assert(l == n && r == n); { std::vector relabel(n); for (int i : std::views::iota(0, n)) { relabel[bfs_order[i]] = i; } std::vector relabel_par(n, -1); for (int i : std::views::iota(1, n)) { relabel_par[relabel[i]] = relabel[par[i]]; } std::swap(par, relabel_par); } static_assert(MODE == 0 || MODE == 1 || MODE == 2); if constexpr (MODE == 0) { internal::centroid_decomposition_dfs_naive(par, bfs_order, f); } else if constexpr (MODE == 1) { internal::one_third_centroid_decomposition(par, bfs_order, f); } else { internal::one_third_centroid_decomposition_virtual_real( par, bfs_order, std::vector(n, 1), f); } } } // namespace ebi #line 9 "test/yuki/yuki_1796.test.cpp" namespace ebi { using mint = modint998244353; void main_() { Binomial binom(300000); int n; std::cin >> n; std::vector q(n); std::cin >> q; Graph tree(n); auto ans = q; rep(i, 0, n - 1) { int u, v; std::cin >> u >> v; u--; v--; tree.add_edge(u, v, 1); tree.add_edge(v, u, 1); ans[u] += q[v] * binom.inv(4); ans[v] += q[u] * binom.inv(4); } tree.build(); auto calc = [&](const std::vector &par, const std::vector &vs, int n0, int n1) { int sz = (int)par.size(); std::vector depth(sz, 0); rep(i, 1, sz) { depth[i] = depth[par[i]] + 1; } auto calc2 = [&](int l0, int r0, int l1, int r1) -> void { int sz0 = *std::max_element(depth.begin() + l0, depth.begin() + r0); int sz1 = *std::max_element(depth.begin() + l1, depth.begin() + r1); std::vector f(sz0 + sz1 + 1), g(sz1 + 1); rep(i, 0, f.size()) { f[i] = binom.inv(i + 1) * binom.inv(i + 1); } rep(i, l1, r1) { g[depth[i]] += q[vs[i]]; } auto h = middle_product(f, g); assert((int)h.size() == sz0 + 1); rep(i, l0, r0) { ans[vs[i]] += h[depth[i]]; } }; calc2(1, 1 + n0, 1 + n0, 1 + n0 + n1); calc2(1 + n0, 1 + n0 + n1, 1, 1 + n0); }; centroid_decomposition<1>(tree, calc); rep(i, 0, n) { ans[i] *= binom.f(n) * binom.f(n); std::cout << ans[i] << '\n'; } } } // namespace ebi int main() { ebi::fast_io(); int t = 1; // std::cin >> t; while (t--) { ebi::main_(); } return 0; }