// #pragma GCC target("avx2") // #pragma GCC optimize("O3") // #pragma GCC optimize("unroll-loops") // #define INTERACTIVE #include using namespace std; namespace templates { // type using ll = long long; using ull = unsigned long long; using Pii = pair; using Pil = pair; using Pli = pair; using Pll = pair; template using pq = priority_queue; template using qp = priority_queue, greater>; // clang-format off #define vec(T, A, ...) vector A(__VA_ARGS__); #define vvec(T, A, h, ...) vector> A(h, vector(__VA_ARGS__)); #define vvvec(T, A, h1, h2, ...) vector>> A(h1, vector>(h2, vector(__VA_ARGS__))); // clang-format on // for loop #define fori1(a) for (ll _ = 0; _ < (a); _++) #define fori2(i, a) for (ll i = 0; i < (a); i++) #define fori3(i, a, b) for (ll i = (a); i < (b); i++) #define fori4(i, a, b, c) for (ll i = (a); ((c) > 0 || i > (b)) && ((c) < 0 || i < (b)); i += (c)) #define overload4(a, b, c, d, e, ...) e #define fori(...) overload4(__VA_ARGS__, fori4, fori3, fori2, fori1)(__VA_ARGS__) // declare and input // clang-format off #define INT(...) int __VA_ARGS__; inp(__VA_ARGS__); #define LL(...) ll __VA_ARGS__; inp(__VA_ARGS__); #define STRING(...) string __VA_ARGS__; inp(__VA_ARGS__); #define CHAR(...) char __VA_ARGS__; inp(__VA_ARGS__); #define DOUBLE(...) double __VA_ARGS__; STRING(str___); __VA_ARGS__ = stod(str___); #define VEC(T, A, n) vector A(n); inp(A); #define VVEC(T, A, n, m) vector> A(n, vector(m)); inp(A); // clang-format on // const value const ll MOD1 = 1000000007; const ll MOD9 = 998244353; const double PI = acos(-1); // other macro #if !defined(RIN__LOCAL) && !defined(INTERACTIVE) #define endl "\n" #endif #define spa ' ' #define len(A) ll(A.size()) #define all(A) begin(A), end(A) // function vector stoc(string &S) { int n = S.size(); vector ret(n); for (int i = 0; i < n; i++) ret[i] = S[i]; return ret; } string ctos(vector &S) { int n = S.size(); string ret = ""; for (int i = 0; i < n; i++) ret += S[i]; return ret; } template auto min(const T &a) { return *min_element(all(a)); } template auto max(const T &a) { return *max_element(all(a)); } template auto clamp(T &a, const S &l, const S &r) { return (a > r ? r : a < l ? l : a); } template inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } template inline bool chclamp(T &a, const S &l, const S &r) { auto b = clamp(a, l, r); return (a != b ? a = b, 1 : 0); } template T sum(vector &A) { T tot = 0; for (auto a : A) tot += a; return tot; } template vector compression(vector X) { sort(all(X)); X.erase(unique(all(X)), X.end()); return X; } // input and output namespace io { // __int128_t std::ostream &operator<<(std::ostream &dest, __int128_t value) { std::ostream::sentry s(dest); if (s) { __uint128_t tmp = value < 0 ? -value : value; char buffer[128]; char *d = std::end(buffer); do { --d; *d = "0123456789"[tmp % 10]; tmp /= 10; } while (tmp != 0); if (value < 0) { --d; *d = '-'; } int len = std::end(buffer) - d; if (dest.rdbuf()->sputn(d, len) != len) { dest.setstate(std::ios_base::badbit); } } return dest; } // vector template istream &operator>>(istream &is, vector &A) { for (auto &a : A) is >> a; return is; } template ostream &operator<<(ostream &os, vector &A) { for (size_t i = 0; i < A.size(); i++) { os << A[i]; if (i != A.size() - 1) os << ' '; } return os; } // vector> template istream &operator>>(istream &is, vector> &A) { for (auto &a : A) is >> a; return is; } template ostream &operator<<(ostream &os, vector> &A) { for (size_t i = 0; i < A.size(); i++) { os << A[i]; if (i != A.size() - 1) os << endl; } return os; } // pair template istream &operator>>(istream &is, pair &A) { is >> A.first >> A.second; return is; } template ostream &operator<<(ostream &os, pair &A) { os << A.first << ' ' << A.second; return os; } // vector> template istream &operator>>(istream &is, vector> &A) { for (size_t i = 0; i < A.size(); i++) { is >> A[i]; } return is; } template ostream &operator<<(ostream &os, vector> &A) { for (size_t i = 0; i < A.size(); i++) { os << A[i]; if (i != A.size() - 1) os << endl; } return os; } // tuple template struct TuplePrint { static ostream &print(ostream &os, const T &t) { TuplePrint::print(os, t); os << ' ' << get(t); return os; } }; template struct TuplePrint { static ostream &print(ostream &os, const T &t) { os << get<0>(t); return os; } }; template ostream &operator<<(ostream &os, const tuple &t) { TuplePrint::print(os, t); return os; } // io functions void FLUSH() { cout << flush; } void print() { cout << endl; } template void print(Head &&head, Tail &&...tail) { cout << head; if (sizeof...(Tail)) cout << spa; print(std::forward(tail)...); } template void prisep(vector &A, S sep) { int n = A.size(); for (int i = 0; i < n; i++) { cout << A[i]; if (i != n - 1) cout << sep; } cout << endl; } template void priend(T A, S end) { cout << A << end; } template void prispa(T A) { priend(A, spa); } template bool printif(bool f, T A, S B) { if (f) print(A); else print(B); return f; } template void inp(T &...a) { (cin >> ... >> a); } } // namespace io using namespace io; // read graph vector> read_edges(int n, int m, bool direct = false, int indexed = 1) { vector> edges(n, vector()); for (int i = 0; i < m; i++) { INT(u, v); u -= indexed; v -= indexed; edges[u].push_back(v); if (!direct) edges[v].push_back(u); } return edges; } vector> read_tree(int n, int indexed = 1) { return read_edges(n, n - 1, false, indexed); } template vector>> read_wedges(int n, int m, bool direct = false, int indexed = 1) { vector>> edges(n, vector>()); for (int i = 0; i < m; i++) { INT(u, v); T w; inp(w); u -= indexed; v -= indexed; edges[u].push_back({v, w}); if (!direct) edges[v].push_back({u, w}); } return edges; } template vector>> read_wtree(int n, int indexed = 1) { return read_wedges(n, n - 1, false, indexed); } // yes / no namespace yesno { // yes inline bool yes(bool f = true) { cout << (f ? "yes" : "no") << endl; return f; } inline bool Yes(bool f = true) { cout << (f ? "Yes" : "No") << endl; return f; } inline bool YES(bool f = true) { cout << (f ? "YES" : "NO") << endl; return f; } // no inline bool no(bool f = true) { cout << (!f ? "yes" : "no") << endl; return f; } inline bool No(bool f = true) { cout << (!f ? "Yes" : "No") << endl; return f; } inline bool NO(bool f = true) { cout << (!f ? "YES" : "NO") << endl; return f; } // possible inline bool possible(bool f = true) { cout << (f ? "possible" : "impossible") << endl; return f; } inline bool Possible(bool f = true) { cout << (f ? "Possible" : "Impossible") << endl; return f; } inline bool POSSIBLE(bool f = true) { cout << (f ? "POSSIBLE" : "IMPOSSIBLE") << endl; return f; } // impossible inline bool impossible(bool f = true) { cout << (!f ? "possible" : "impossible") << endl; return f; } inline bool Impossible(bool f = true) { cout << (!f ? "Possible" : "Impossible") << endl; return f; } inline bool IMPOSSIBLE(bool f = true) { cout << (!f ? "POSSIBLE" : "IMPOSSIBLE") << endl; return f; } // Alice Bob inline bool Alice(bool f = true) { cout << (f ? "Alice" : "Bob") << endl; return f; } inline bool Bob(bool f = true) { cout << (f ? "Bob" : "Alice") << endl; return f; } // Takahashi Aoki inline bool Takahashi(bool f = true) { cout << (f ? "Takahashi" : "Aoki") << endl; return f; } inline bool Aoki(bool f = true) { cout << (f ? "Aoki" : "Takahashi") << endl; return f; } } // namespace yesno using namespace yesno; } // namespace templates using namespace templates; template struct BinaryTrie { using u64 = unsigned long long; public: struct Node { Node *nxt[2]; T cnt; Node() : nxt{nullptr, nullptr}, cnt(T()) {} }; Node *root; bool multi; BinaryTrie(bool multi = true) : root(new Node()), multi(multi) {} BinaryTrie(Node *root, bool multi = true) : root(root), multi(multi) {} void insert(u64 bit, T x = T(1), u64 xor_val = 0) { if (!multi) { assert(x == 1); if (x == 1 && count(bit, xor_val) == 1) return; } root = insert(root, bit, x, MAXLOG, xor_val); } void erase(u64 bit, T x = T(1), u64 xor_val = 0) { if (!multi) { assert(x == 1); if (count(bit, xor_val) == 0) return; } insert(root, bit, -x, MAXLOG, xor_val); } Node *find(u64 bit, u64 xor_val = 0) { return find(root, bit, MAXLOG, xor_val); } T count(u64 bit, u64 xor_val = 0) { auto node = find(bit, xor_val); return node ? node->cnt : T(); } std::pair kth_element(T k, u64 xor_val = 0) { if (k < 0) k = (root->cnt) + k; if (k < 0 || root->cnt <= k) return {-1, nullptr}; return kth_element(root, k, MAXLOG, xor_val); } std::pair min_element(u64 xor_val = 0) { return kth_element(0, xor_val); } std::pair max_element(u64 xor_val = 0) { return kth_element(-1, xor_val); } T lt_count(u64 bit, u64 xor_val = 0) { return count_less(root, bit, MAXLOG, xor_val); } T leq_count(u64 bit, u64 xor_val = 0) { return lt_count(bit, xor_val) + count(bit, xor_val); } T gt_count(u64 bit, u64 xor_val = 0) { return root->cnt - leq_count(bit, xor_val); } T geq_count(u64 bit, u64 xor_val = 0) { return root->cnt - lt_count(bit, xor_val); } ~BinaryTrie() { delete root; } private: virtual Node *clone(Node *t) { return t; } Node *insert(Node *t, u64 bit, T x, int depth, u64 xor_val, bool need = true) { if (need) t = clone(t); if (depth == -1) { t->cnt += x; } else { bool f = (xor_val >> depth) & 1; auto &to = t->nxt[f ^ ((bit >> depth) & 1)]; if (!to) { to = new Node(); need = false; } to = insert(to, bit, x, depth - 1, xor_val, need); t->cnt += x; } return t; } Node *find(Node *t, u64 bit, int depth, u64 xor_val) { if (depth == -1) return t; else { bool f = (xor_val >> depth) & 1; auto &to = t->nxt[f ^ ((bit >> depth) & 1)]; return to ? find(to, bit, depth - 1, xor_val) : nullptr; } } std::pair kth_element(Node *t, T k, int bit_index, u64 xor_val) { if (bit_index == -1) return {0, t}; else { bool f = (xor_val >> bit_index) & 1; if ((t->nxt[f] ? t->nxt[f]->cnt : 0) <= k) { auto res = kth_element(t->nxt[f ^ 1], k - (t->nxt[f] ? t->nxt[f]->cnt : 0), bit_index - 1, xor_val); res.first |= u64(1) << bit_index; return res; } else { return kth_element(t->nxt[f], k, bit_index - 1, xor_val); } } } T count_less(Node *t, u64 bit, int bit_index, u64 xor_val) { if (bit_index == -1) return T(); T ret = T(); bool f = (xor_val >> bit_index) & 1; if ((bit >> bit_index & 1) && t->nxt[f]) ret += t->nxt[f]->cnt; if (t->nxt[f ^ (bit >> bit_index & 1)]) ret += count_less(t->nxt[f ^ (bit >> bit_index & 1)], bit, bit_index - 1, xor_val); return ret; } }; /* // type template struct S { using u64 = unsigned long long; S() { // e() // write here } S &operator+=(const S &r) { // write here return *this; } friend S operator+(S l, const S &r) { return l += r; } S operator-(const S &r) const { // 削除を行う場合に必要 return *this; } bool operator==(const int &x) const { // 重複を許さない場合、x == 1 に対して適切な判定を行う // 削除を行う場合、x == 0 に対して適切な判定を行う return false; } S(u64 x) { // insert の引数等に与える用 // 必要に応じて bit とかを引数に追加する想定 } }; */ using Node = BinaryTrie<0, ll>::Node; void solve() { INT(n, m); VEC(int, R, n); VEC(int, C, m); VVEC(int, A, n, m); const ll inf = 1LL << 30; Node *root = new Node(); auto add = [&](int bit, int x, ll z) { auto node = root; for (int i = 29; i >= 0; i--) { if (node->nxt[0] == nullptr) node->nxt[0] = new Node(); if (node->nxt[1] == nullptr) node->nxt[1] = new Node(); if (x >> i & 1) { node = node->nxt[1 - (bit >> i & 1)]; } else { node->nxt[1 - (bit >> i & 1)]->cnt += z; node = node->nxt[bit >> i & 1]; } } }; for (int i = 0; i < n; i++) { int ma = 1; while (ma <= R[i]) ma <<= 1; ma--; int x = A[0][0] ^ A[i][0]; if (R[i] == 0) { add(x, 1, inf); } else { add(x, 0, 1); add(x, R[i], 1); add(x, ma, inf); } } for (int j = 0; j < m; j++) { int ma = 1; while (ma <= C[j]) ma <<= 1; ma--; int x = A[0][j]; if (C[j] == 0) { add(x, 1, inf); } else { add(x, 0, 1); add(x, C[j], 1); add(x, ma, inf); } } ll ans = inf; int r0 = -1; auto dfs = [&](auto &&self, Node *node, ll tot, ll bit, ll t) -> void { if (node == nullptr) { if (chmin(ans, tot)) r0 = bit; return; } tot += node->cnt; self(self, node->nxt[0], tot, bit, t - 1); if (t != 0) self(self, node->nxt[1], tot, bit | (1 << t - 1), t - 1); }; dfs(dfs, root, 0, 0, 30); if (ans == inf) { print(-1); return; } vec(int, R_, n); vec(int, C_, m); fori(i, n) { R_[i] = r0 ^ A[i][0] ^ A[0][0]; } fori(j, m) { C_[j] = r0 ^ A[0][j]; } fori(i, n) fori(j, m) { if ((R_[i] ^ C_[j]) != A[i][j]) { print(-1); return; } } print(ans); } int main() { #ifndef INTERACTIVE cin.tie(0)->sync_with_stdio(0); #endif // cout << fixed << setprecision(12); int t; t = 1; cin >> t; while (t--) solve(); return 0; } // // #pragma GCC target("avx2") // // #pragma GCC optimize("O3") // // #pragma GCC optimize("unroll-loops") // // #define INTERACTIVE // // #include "kyopro-cpp/template.hpp" // // #include "data_structure/Binary_Trie.hpp" // using Node = BinaryTrie<0, ll>::Node; // // void solve() { // INT(n, m); // VEC(int, R, n); // VEC(int, C, m); // VVEC(int, A, n, m); // // const ll inf = 1LL << 30; // Node *root = new Node(); // // auto add = [&](int bit, int x, ll z) { // auto node = root; // for (int i = 29; i >= 0; i--) { // if (node->nxt[0] == nullptr) node->nxt[0] = new Node(); // if (node->nxt[1] == nullptr) node->nxt[1] = new Node(); // if (x >> i & 1) { // node = node->nxt[1 - (bit >> i & 1)]; // } else { // node->nxt[1 - (bit >> i & 1)]->cnt += z; // node = node->nxt[bit >> i & 1]; // } // } // }; // // for (int i = 0; i < n; i++) { // int ma = 1; // while (ma <= R[i]) ma <<= 1; // ma--; // // int x = A[0][0] ^ A[i][0]; // if (R[i] == 0) { // add(x, 1, inf); // } else { // add(x, 0, 1); // add(x, R[i], 1); // add(x, ma, inf); // } // } // for (int j = 0; j < m; j++) { // int ma = 1; // while (ma <= C[j]) ma <<= 1; // ma--; // // int x = A[0][j]; // if (C[j] == 0) { // add(x, 1, inf); // } else { // add(x, 0, 1); // add(x, C[j], 1); // add(x, ma, inf); // } // } // // ll ans = inf; // int r0 = -1; // auto dfs = [&](auto &&self, Node *node, ll tot, ll bit, ll t) -> void { // if (node == nullptr) { // if (chmin(ans, tot)) r0 = bit; // return; // } // tot += node->cnt; // self(self, node->nxt[0], tot, bit, t - 1); // if (t != 0) self(self, node->nxt[1], tot, bit | (1 << t - 1), t - 1); // }; // // dfs(dfs, root, 0, 0, 30); // if (ans == inf) { // print(-1); // return; // } // // vec(int, R_, n); // vec(int, C_, m); // fori(i, n) { // R_[i] = r0 ^ A[i][0] ^ A[0][0]; // } // fori(j, m) { // C_[j] = r0 ^ A[0][j]; // } // // fori(i, n) fori(j, m) { // if ((R_[i] ^ C_[j]) != A[i][j]) { // print(-1); // return; // } // } // print(ans); // } // // int main() { // #ifndef INTERACTIVE // cin.tie(0)->sync_with_stdio(0); // #endif // // cout << fixed << setprecision(12); // int t; // t = 1; // cin >> t; // while (t--) solve(); // return 0; // }