#include #include #define rep(i,b) for(int i=0;i=0;i--) #define rep1(i,b) for(int i=1;i=x;i--) #define fore(i,a) for(auto& i:a) #define rng(x) (x).begin(), (x).end() #define rrng(x) (x).rbegin(), (x).rend() #define sz(x) ((int)(x).size()) #define pb push_back #define fi first #define se second #define pcnt __builtin_popcountll using namespace std; using namespace atcoder; using ll = long long; using ull = long long; using ld = long double; template using mpq = priority_queue, greater>; template bool chmax(T &a, const T &b) { if (a bool chmin(T &a, const T &b) { if (b ll sumv(const vector&a){ll res(0);for(auto&&x:a)res+=x;return res;} bool yn(bool a) { if(a) {cout << "Yes" << endl; return true;} else {cout << "No" << endl; return false;}} #define retval(x) {cout << #x << endl; return;} #define cout2(x,y) cout << x << " " << y << endl; #define coutp(p) cout << p.fi << " " << p.se << endl; #define out cout << ans << endl; #define outd cout << fixed << setprecision(20) << ans << endl; #define outm cout << ans.val() << endl; #define outv fore(yans , ans) cout << yans << "\n"; #define outdv fore(yans , ans) cout << yans.val() << "\n"; #define assertmle(x) if (!(x)) {vi v(3e8);} #define asserttle(x) if (!(x)) {while(1){}} #define coutv(v) {fore(vy , v) {cout << vy << " ";} cout << endl;} #define coutv2(v) fore(vy , v) cout << vy << "\n"; #define coutvm(v) {fore(vy , v) {cout << vy.val() << " ";} cout << endl;} #define coutvm2(v) fore(vy , v) cout << vy.val() << "\n"; using pll = pair;using pil = pair;using pli = pair;using pii = pair;using pdd = pair; using vi = vector;using vd = vector;using vl = vector;using vs = vector;using vb = vector; using vpii = vector;using vpli = vector;using vpll = vector;using vpil = vector; using vvi = vector>;using vvl = vector>;using vvs = vector>;using vvb = vector>; using vvpii = vector>;using vvpli = vector>;using vvpll = vector;using vvpil = vector; using mint = modint998244353; //using mint = modint1000000007; //using mint = dynamic_modint<0>; using vm = vector; using vvm = vector>; vector dx={1,0,-1,0,1,1,-1,-1},dy={0,1,0,-1,1,-1,1,-1}; ll gcd(ll a, ll b) { return a?gcd(b%a,a):b;} ll lcm(ll a, ll b) { return a/gcd(a,b)*b;} #define yes {cout <<"Yes"<= 0 && num_ > 0) quad = 1; else if(den_ < 0 && num_ >= 0) quad = 2; else if(den_ <= 0 && num_ < 0) quad = 3; else if(den_ > 0 && num_ <= 0) quad = 4; if (num_ == 0){ num = 0; den = 1; if (den_ < 0) den *= -1; }else if(den_ == 0){ num = 1; if (num_ < 0) num *= -1; den = 0; }else{ ll d = gcd(abs(num_),abs(den_)); num = num_/d; den = den_/d; } #else if (num_ == 0){ num = 0; den = 1; }else if(den_ == 0){ num = 1; den = 0; }else{ ll d = gcd(abs(num_),abs(den_)); num = abs(num_)/d; den = abs(den_)/d; if((num_ < 0 && den_ > 0) || (num_ > 0 && den_ < 0)) num *= -1; } #endif } rational(const rational& other) : num(other.num), den(other.den) { #if defined(DECLINATION) quad = other.quad; #endif } rational& operator=(const rational& other) { if (this != &other) { // 自己代入でないことを確認 num = other.num; den = other.den; #if defined(DECLINATION) quad = other.quad; #endif } return *this; } #if !defined(DECLINATION) rational operator+(const rational& other) const{ if (den == 0 || other.den == 0) return rational(1,0); assert(abs(other.num) < LLONG_MAX/abs(den)); assert(abs(num) < LLONG_MAX/abs(other.den)); return rational(num*other.den + den*other.num, den*other.den); } rational operator-(const rational& other) const{ return *this + rational(other.num,-other.den); } rational operator*(const rational& other) const{ if (den == 0 || other.den == 0) return rational(1,0); if (other.num == 0) return rational(0,1); assert(abs(num) < LLONG_MAX/abs(other.num)); assert(abs(other.den) < LLONG_MAX/abs(den)); return rational(num*other.num, den*other.den); } rational operator/(const rational& other) const{ return *this * rational(other.den , other.num); } rational& operator+=(const rational& other){ *this = *this + other; return *this; } rational& operator-=(const rational& other){ *this = *this - other; return *this; } rational& operator*=(const rational& other){ *this = *this * other; return *this; } rational& operator/=(const rational& other){ *this = *this / other; return *this; } rational operator+(const ll& other) const{ return *this + rational(other,1); } rational operator-(const ll& other) const{ return *this - rational(other,1); } rational operator*(const ll& other) const{ return *this * rational(other,1); } rational operator/(const ll& other) const{ return *this / rational(other,1); } rational& operator+=(const ll& other){ *this = *this + other; return *this; } rational& operator-=(const ll& other){ *this = *this - other; return *this; } rational& operator*=(const ll& other){ *this = *this * other; return *this; } rational& operator/=(const ll& other){ *this = *this / other; return *this; } #endif // !defined(DECLINATION) rational operator+() const{ return *this; } rational operator-() const{ return rational(0,1) - *this; } bool operator==(const rational& other) const{ return (num == other.num) && (den == other.den); } bool operator!=(const rational& other) const{ return (num != other.num) || (den != other.den); } bool operator<(const rational& other) const{ if (abs(other.den)) assert(abs(num) < LLONG_MAX/abs(other.den)); if (abs(den)) assert(abs(other.num) < LLONG_MAX/abs(den)); #if defined(DECLINATION) if (quad != other.quad){ return ((quad+1)%4 < (other.quad+1)%4); } #endif // defined(DECLINATION) return num*other.den < den*other.num; } bool operator<=(const rational& other) const{ if (*this == other) return true; else return (*this < other); } bool operator>(const rational& other) const{ return !(*this <= other); } bool operator>=(const rational& other) const{ return !(*this < other); } }; struct line{ rational grad; rational y_intercept; rational x_intercept; line(ll x1, ll y1, ll x2, ll y2){ assert(x1!=x2 || y1!=y2); grad = rational(y2-y1, x2-x1); y_intercept = -grad * x1 + y1; x_intercept = -rational(x2-x1, y2-y1) * y1 + x1; } bool operator<(line const other) const{ if (grad != other.grad) return grad < other.grad; if (y_intercept != other.y_intercept) return y_intercept < other.y_intercept; if (x_intercept != other.x_intercept) return x_intercept < other.x_intercept; return false; } }; // rational // [remark] // 有理数クラス // 偏角の大小を扱いたい場合はDECLINATIONを定義する。この場合四則演算は定義されない。 // 分子が0となるとき分母は強制的に1となる。 // 分母が0となるとき分子は強制的に1となる。そのため、直線を扱いたい場合はlineクラスを使う。 // 四則演算 or 大小比較でオーバーフローが発生したときアサートで知らせる。 // 例えば、2回以上の四則演算や1回四則演算した後に大小比較を適用させる場合はオーバフローが発生する場合がある // // [interface] // rational(a,b) : a/bを既約分数の状態で管理。DECLINATIONが定義されている場合は何象限かも管理。 // // line // [remark] // 直線を有理数で扱うクラス。mapのキーに指定できる。 // 2点を通る直線を定義しその大小比較を行う。 // x_interceptなしでは、直線がy軸に平行な2直線の区別ができない。 void solve(){ int n; cin>>n; vi x(n),y(n); rep(i,n) cin>>x[i]>>y[i]; using prr = pair; map mp; rep(i,n) repx(j,i+1,n){ rational l(x[i]-x[j], y[i]-y[j]); pll c(x[i]+x[j], y[i]+y[j]); prr p = {l, c}; mp[p]++; } ll ans = 0; rep(i,n) repx(j,i+1,n){ rational l(y[i]-y[j], x[j]-x[i]); pll c(x[i]+x[j], y[i]+y[j]); prr p = {l, c}; ans += mp[p]; } show(ans); ans /= 2; out; return; } int main(){ ios::sync_with_stdio(false); cin.tie(0); int t = 1; //cin>>t; rep(i,t){ solve(); } return 0; }