#line 1 "cp_templates/template/template.hpp" # include using namespace std; using ll = long long; using ull = unsigned long long; const double pi = acos(-1); templateconstexpr T inf() { return ::std::numeric_limits::max(); } templateconstexpr T hinf() { return inf() / 2; } template T_char TL(T_char cX) { return tolower(cX); } template T_char TU(T_char cX) { return toupper(cX); } template bool chmin(T& a,T b) { if(a > b){a = b; return true;} return false; } template bool chmax(T& a,T b) { if(a < b){a = b; return true;} return false; } int popcnt(unsigned long long n) { int cnt = 0; for (int i = 0; i < 64; i++)if ((n >> i) & 1)cnt++; return cnt; } int d_sum(ll n) { int ret = 0; while (n > 0) { ret += n % 10; n /= 10; }return ret; } int d_cnt(ll n) { int ret = 0; while (n > 0) { ret++; n /= 10; }return ret; } ll gcd(ll a, ll b) { if (b == 0)return a; return gcd(b, a%b); }; ll lcm(ll a, ll b) { ll g = gcd(a, b); return a / g*b; }; ll MOD(ll x, ll m){return (x%m+m)%m; } ll FLOOR(ll x, ll m) {ll r = (x%m+m)%m; return (x-r)/m; } template using dijk = priority_queue, greater>; # define all(qpqpq) (qpqpq).begin(),(qpqpq).end() # define UNIQUE(wpwpw) (wpwpw).erase(unique(all((wpwpw))),(wpwpw).end()) # define LOWER(epepe) transform(all((epepe)),(epepe).begin(),TL) # define UPPER(rprpr) transform(all((rprpr)),(rprpr).begin(),TU) # define rep(i,upupu) for(ll i = 0, i##_len = (upupu);(i) < (i##_len);(i)++) # define reps(i,opopo) for(ll i = 1, i##_len = (opopo);(i) <= (i##_len);(i)++) # define len(x) ((ll)(x).size()) # define bit(n) (1LL << (n)) # define pb push_back # define exists(c, e) ((c).find(e) != (c).end()) struct INIT{ INIT(){ std::ios::sync_with_stdio(false); std::cin.tie(0); cout << fixed << setprecision(20); } }INIT; namespace mmrz { void solve(); } int main(){ mmrz::solve(); } #line 2 "2783.cpp" // #include "./cp_templates/template/debug.hpp" // #define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__) // #define debug(...) (static_cast(0)) #line 1 "cp_templates/math/modint.hpp" template class modint { using u64 = std::uint_fast64_t; public: u64 a; constexpr modint(const u64 x = 0) noexcept : a(x % Modulus) {} constexpr u64 &value() noexcept { return a; } constexpr const u64 &value() const noexcept { return a; } constexpr modint operator+(const modint rhs) const noexcept { return modint(*this) += rhs; } constexpr modint operator-(const modint rhs) const noexcept { return modint(*this) -= rhs; } constexpr modint operator*(const modint rhs) const noexcept { return modint(*this) *= rhs; } constexpr modint operator/(const modint rhs) const noexcept { return modint(*this) /= rhs; } constexpr modint &operator+=(const modint rhs) noexcept { a += rhs.a; if (a >= Modulus) { a -= Modulus; } return *this; } constexpr modint &operator-=(const modint rhs) noexcept { if (a < rhs.a) { a += Modulus; } a -= rhs.a; return *this; } constexpr modint &operator*=(const modint rhs) noexcept { a = a * rhs.a % Modulus; return *this; } constexpr modint &operator/=(modint rhs) noexcept { u64 exp = Modulus - 2; while (exp) { if (exp % 2) { *this *= rhs; } rhs *= rhs; exp /= 2; } return *this; } friend std::ostream& operator<<(std::ostream& os, const modint& rhs) { os << rhs.a; return os; } }; #line 7 "2783.cpp" using mint = modint<998244353>; using namespace mmrz; void SOLVE(){ int n; cin >> n; vector _a(n), _b(n); rep(i, n)cin >> _a[i]; rep(i, n)cin >> _b[i]; vector a, b; map a_final; rep(i, n){ bool fb = _b[i].back() == 'X'; if(fb){ if(len(_b[i]) == 1){ a_final[stoi(_a[i])] += 1; } }else{ a.pb(stoi(_a[i])); b.pb(stoi(_b[i])); } } vector>> dp(9, vector(5, vector(34, mint(0)))); dp[0][0][0] = 1; rep(i, len(a)){ int ca = a[i]; int cb = b[i]; auto ndp = dp; for(int x = 0;x < 8;x++){ for(int y = 0;y <= 4-ca;y++){ for(int z = 0;z <= 33-cb;z++){ ndp[x+1][y+ca][z+cb] += dp[x][y][z]; } } } dp = ndp; } mint ans = 0; rep(i, 5){ ans += dp[8][i][33] * a_final[4-i]; } cout << ans << endl; } void mmrz::solve(){ int t = 1; //cin >> t; while(t--)SOLVE(); }