#include #include using namespace std; using namespace atcoder; istream &operator>>(istream &is, modint &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint &a) { return os << a.val(); } istream &operator>>(istream &is, modint998244353 &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint998244353 &a) { return os << a.val(); } istream &operator>>(istream &is, modint1000000007 &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint1000000007 &a) { return os << a.val(); } typedef long long ll; typedef pair pii; typedef pair pll; #define FOR(i,l,r) for (int i = l;i < (int)(r); i++) #define rep(i,n) for (int i = 0;i < (int)(n); i++) #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() #define my_sort(x) sort(x.begin(), x.end()) #define my_max(x) *max_element(all(x)) #define my_min(x) *min_element(all(x)) template inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } const int INF = (1<<30) - 1; const ll LINF = (1LL<<62) - 1; const int MOD = 998244353; const int MOD2 = 1e9+7; const double PI = acos(-1); vector di = {1,0,-1,0}; vector dj = {0,1,0,-1}; #ifdef LOCAL # include # define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__) #else # define debug(...) (static_cast(0)) #endif // HL-Decomposition // vid: id of v after HL-Decomposition // inv: inv[vid[v]] = v // par: id of parent // depth // subsize: size of subtree // head: head-id in the heavy-path // prev, next: prev-id, next-id in the heavy-path // type: the id of tree for forest // vend: the last-id of node in v-subtree typedef vector > Graph; struct HLDecomposition { int n; Graph G; vector vid, inv, par, depth, subsize, head, prev, next, type; // construct HLDecomposition() { } HLDecomposition(const Graph &G_) : n((int)G_.size()), G(G_), vid(n, -1), inv(n), par(n), depth(n), subsize(n, 1), head(n), prev(n, -1), next(n, -1), type(n) { } void build(vector roots = {0}) { int curtype = 0, pos = 0; for (auto r : roots) decide_heavy_edge(r), reconstruct(r, curtype++, pos); } void decide_heavy_edge(int r) { stack > st; par[r] = -1, depth[r] = 0; st.emplace(r, 0); while (!st.empty()) { int v = st.top().first; int &i = st.top().second; if (i < (int)G[v].size()) { int e = G[v][i++]; if (e == par[v]) continue; par[e] = v, depth[e] = depth[v] + 1; st.emplace(e, 0); } else { st.pop(); int maxsize = 0; for (auto e : G[v]) { if (e == par[v]) continue; subsize[v] += subsize[e]; if (maxsize < subsize[e]) maxsize = subsize[e], prev[e] = v, next[v] = e; } } } } void reconstruct(int r, int curtype, int &pos) { stack st({r}); while (!st.empty()) { int start = st.top(); st.pop(); for (int v = start; v != -1; v = next[v]) { type[v] = curtype; vid[v] = pos++; inv[vid[v]] = v; head[v] = start; for (auto e : G[v]) if (e != par[v] && e != next[v]) st.push(e); } } } // node query [u, v], f([left, right]) void foreach_nodes(int u, int v, const function &f) { while (true) { if (vid[u] > vid[v]) swap(u, v); f(max(vid[head[v]], vid[u]), vid[v]); if (head[u] != head[v]) v = par[head[v]]; else break; } } // edge query [u, v], f([left, right]) void foreach_edges(int u, int v, const function &f) { while (true) { if (vid[u] > vid[v]) swap(u, v); if (head[u] != head[v]) { f(vid[head[v]], vid[v]); v = par[head[v]]; } else { if (u != v) { f(vid[u]+1, vid[v]); } break; } } } // https://atcoder.jp/contests/abc138/submissions/38833623 void subtree_nodes(int v, const function &f) { f(vid[v],vid[v]+subsize[v]); } // https://judge.u-aizu.ac.jp/onlinejudge/review.jsp?rid=7464630#1 void subtree_edges(int v, const function &f) { f(vid[v] + 1, vid[v] + subsize[v]); } // LCA int lca(int u, int v) { while (true) { if (vid[u] > vid[v]) swap(u, v); if (head[u] == head[v]) return u; v = par[head[v]]; } } }; // https://drken1215.hatenablog.com/entry/2018/08/14/193500 // hld.build()忘れない !!! // // [path_query] // hld.foreach_nodes(v,[&](int l, int r) {seg.apply(l,r+1,x);}); // hld.foreach_edges(v,[&](int l, int r) {seg.apply(l,r+1,x);}); // // [subtree_query] // hld.subtree_nodes(v,[&](int l, int r) {seg.apply(l,r,x);}); // hld.subtree_edges(v,[&](int l, int r) {seg.apply(l,r,x);}); using S = int; using F = int; S op(S a, S b){return max(a, b);} S e(){return 0;} S mapping(F f, S x){return f + x;} F composition(F f, F g){return f + g;} F id(){return 0;} int main(){ cin.tie(0); ios_base::sync_with_stdio(false); int H, W; cin >> H >> W; vector A(H, vector(W)); rep(i, H)rep(j, W) cin >> A[i][j]; // Kruskal using P = tuple; vector

edges; rep(i, H)rep(j, W){ rep(d, 4){ int ni = i + di[d], nj = j + dj[d]; if(ni < 0 || ni >= H || nj < 0 || nj >= W) continue; edges.push_back(P{max(A[i][j], A[ni][nj]), i * W + j, ni * W + nj}); } } sort(all(edges)); debug(edges); int V = H * W; Graph g(V); dsu uf(V); for(auto &[_, u, v]: edges)if(!uf.same(u, v)){ uf.merge(u, v); g[u].push_back(v); g[v].push_back(u); } HLDecomposition hld(g); hld.build(); vector dat(V, 0); lazy_segtree seg(dat); rep(v, V)for(auto &u : g[v])if(v < u){ int cost = max(A[v/W][v%W], A[u/W][u%W]); hld.foreach_edges(v, u, [&](int l, int r) {seg.apply(l, r + 1, cost);}); } int Q; cin >> Q; while(Q--){ int si, sj; int gi, gj; cin >> si >> sj; cin >> gi >> gj; si--; sj--; gi--; gj--; int ans = 0; hld.foreach_edges(si * W + sj, gi * W + gj, [&](int l, int r){chmax(ans, seg.prod(l, r + 1)); }); cout << ans << endl; } }