import os,sys,random,threading #sys.exit() 退出程序 from random import randint,choice,shuffle #randint(a,b)从[a,b]范围随机选择一个数 #choice(seq)seq可以是一个列表,元组或字符串,从seq中随机选取一个元素 #shuffle(x)将一个可变的序列x中的元素打乱 from copy import deepcopy from io import BytesIO,IOBase from types import GeneratorType from functools import lru_cache,reduce #reduce(op,迭代对象) from bisect import bisect_left,bisect_right #bisect_left(x) 大于等于x的第一个下标 #bisect_right(x) 大于x的第一个下标 from collections import Counter,defaultdict,deque from itertools import accumulate,combinations,permutations #accumulate(a)用a序列生成一个累积迭代器,一般list化前面放个[0]做前缀和用 #combinations(a,k)a序列选k个 组合迭代器 #permutations(a,k)a序列选k个 排列迭代器 from heapq import heapify,heappop,heappush #heapify将列表转为堆 from typing import Generic,Iterable,Iterator,TypeVar,Union,List from string import ascii_lowercase,ascii_uppercase,digits #小写字母,大写字母,十进制数字 from math import ceil,floor,sqrt,pi,factorial,gcd,log,log10,log2,inf #ceil向上取整,floor向下取整 ,sqrt开方 ,factorial阶乘 from decimal import Decimal,getcontext #Decimal(s) 实例化Decimal对象,一般使用字符串 #getcontext().prec=100 修改精度 from sys import stdin, stdout, setrecursionlimit input = lambda: sys.stdin.readline().rstrip("\r\n") MI = lambda :map(int,input().split()) li = lambda :list(MI()) ii = lambda :int(input()) mod = int(1e9 + 7) #998244353 inf = int(1e20) py = lambda :print("YES") pn = lambda :print("NO") DIRS = [(0, 1), (1, 0), (0, -1), (-1, 0)] # 右下左上 DIRS8 = [(0, 1), (1, 1), (1, 0), (1, -1), (0, -1), (-1, -1), (-1, 0),(-1, 1)] # →↘↓↙←↖↑↗ import os,sys,random,threading #sys.exit() 退出程序 #sys.setrecursionlimit(10**6) #调整栈空间 from random import randint,choice,shuffle #randint(a,b)从[a,b]范围随机选择一个数 #choice(seq)seq可以是一个列表,元组或字符串,从seq中随机选取一个元素 #shuffle(x)将一个可变的序列x中的元素打乱 from copy import deepcopy from io import BytesIO,IOBase from types import GeneratorType from functools import lru_cache,reduce #reduce(op,迭代对象) from bisect import bisect_left,bisect_right #bisect_left(x) 大于等于x的第一个下标 #bisect_right(x) 大于x的第一个下标 from collections import Counter,defaultdict,deque from itertools import accumulate,combinations,permutations #accumulate(a)用a序列生成一个累积迭代器,一般list化前面放个[0]做前缀和用 #combinations(a,k)a序列选k个 组合迭代器 #permutations(a,k)a序列选k个 排列迭代器 from heapq import heapify,heappop,heappush #heapify将列表转为堆 from typing import Generic,Iterable,Iterator,TypeVar,Union,List from string import ascii_lowercase,ascii_uppercase,digits #小写字母,大写字母,十进制数字 from math import ceil,floor,sqrt,pi,factorial,gcd,log,log10,log2,inf #ceil向上取整,floor向下取整 ,sqrt开方 ,factorial阶乘 from decimal import Decimal,getcontext #Decimal(s) 实例化Decimal对象,一般使用字符串 #getcontext().prec=100 修改精度 from sys import stdin, stdout, setrecursionlimit input = lambda: sys.stdin.readline().rstrip("\r\n") MI = lambda :map(int,input().split()) li = lambda :list(MI()) ii = lambda :int(input()) mod = int(1e9 + 7) #998244353 inf = 1<<60 py = lambda :print("YES") pn = lambda :print("NO") DIRS = [(0, 1), (1, 0), (0, -1), (-1, 0)] # 右下左上 DIRS8 = [(0, 1), (1, 1), (1, 0), (1, -1), (0, -1), (-1, -1), (-1, 0),(-1, 1)] # →↘↓↙←↖↑↗ class LazySegTree: """ v: 初始序列,树叶节点 op: 左右节点之间的合并操作 e: 线段树维护的值的幺元。op(e, x) = op(x, e) = x mapping: 父结点的懒标记更新子结点的值 composition: 父结点的懒标记更新子结点的懒标记(合并) id_: 更新操作/懒标记的幺元 """ def __init__(self,v,op,e,mapping,composition,id_): self._op = op self._e = e self._mapping = mapping self._composition = composition self._id = id_ if isinstance(v, int): v = [e] * v self._n = len(v) self._log = (self._n-1).bit_length() self._size = 1 << self._log self._d = [e] * (2 * self._size) self._lz = [self._id] * self._size for i in range(self._n): self._d[self._size + i] = v[i] for i in range(self._size - 1, 0, -1): self._update(i) def _update(self, k): self._d[k] = self._op(self._d[2 * k], self._d[2 * k + 1]) def _all_apply(self, k, f): self._d[k] = self._mapping(f, self._d[k]) if k < self._size: self._lz[k] = self._composition(f, self._lz[k]) def _push(self, k): self._all_apply(2 * k, self._lz[k]) self._all_apply(2 * k + 1, self._lz[k]) self._lz[k] = self._id def set(self, p, x): #将下标p的位置直接设置成x p += self._size for i in range(self._log, 0, -1): self._push(p >> i) self._d[p] = x for i in range(1, self._log + 1): self._update(p >> i) def get(self, p): #得到下标为p的位置 p += self._size for i in range(self._log, 0, -1): self._push(p >> i) return self._d[p] def prod(self, left, right): #区间查询[left,right] right+=1 if left == right: return self._e left += self._size right += self._size for i in range(self._log, 0, -1): if ((left >> i) << i) != left: self._push(left >> i) if ((right >> i) << i) != right: self._push(right >> i) sml = self._e smr = self._e while left < right: if left & 1: sml = self._op(sml, self._d[left]) left += 1 if right & 1: right -= 1 smr = self._op(self._d[right], smr) left >>= 1 right >>= 1 return self._op(sml, smr) def all_prod(self): #全区间查询 return self._d[1] def apply(self, left, right, f): #区间[left,right]更新f right+=1 if left == right: return left += self._size right += self._size for i in range(self._log, 0, -1): if ((left >> i) << i) != left: self._push(left >> i) if ((right >> i) << i) != right: self._push((right - 1) >> i) l2 = left r2 = right while left < right: if left & 1: self._all_apply(left, f) left += 1 if right & 1: right -= 1 self._all_apply(right, f) left >>= 1 right >>= 1 left = l2 right = r2 for i in range(1, self._log + 1): if ((left >> i) << i) != left: self._update(left >> i) if ((right >> i) << i) != right: self._update((right - 1) >> i) def max_right(self,left,g): #以left为左端点,找右侧第一个使得g为false的下标 #比如希望区间和大于等于k,那么g就是 return x[0] < k 这里的x[0]就是区间和 if left == self._n: return self._n left += self._size for i in range(self._log, 0, -1): self._push(left >> i) sm = self._e first = True while first or (left & -left) != left: first = False while left % 2 == 0: left >>= 1 if not g(self._op(sm, self._d[left])): while left < self._size: self._push(left) left *= 2 if g(self._op(sm, self._d[left])): sm = self._op(sm, self._d[left]) left += 1 return left - self._size sm = self._op(sm, self._d[left]) left += 1 return self._n def min_left(self, right, g) -> int: #以right为右端点,找左侧第一个使得g为false的下标 if right == 0: return 0 right += self._size for i in range(self._log, 0, -1): self._push((right - 1) >> i) sm = self._e first = True while first or (right & -right) != right: first = False right -= 1 while right > 1 and right % 2: right >>= 1 if not g(self._op(self._d[right], sm)): while right < self._size: self._push(right) right = 2 * right + 1 if g(self._op(self._d[right], sm)): sm = self._op(self._d[right], sm) right -= 1 return right + 1 - self._size sm = self._op(self._d[right], sm) return 0 class HLD: def __init__(self, g, root): #无论是点还是dfn还是dep,都从1开始,默认0是无 n=len(g) self.g=g self.fa=[0]*(n+5) #父节点,0表示无父节点 self.size=[1]*(n+5) #子树大小 self.dep=[0]*(n+5) #深度,根深度为1 self.son=[0]*(n+5) #重儿子,0表示无儿子 self.dfn=[0]*(n+5) #dfs序,子树终点的dfs序是dfn[i]+size[i]-1 self.top=[0]*(n+5) #所在重链起点,起点就是自己 self.rank=[0]*(n+5) #dfs序为i的节点编号 fa=self.fa;size=self.size;dep=self.dep;son=self.son dfn=self.dfn;top=self.top;rank=self.rank stk=[[root,0,0]] #node,flag,fa dep[root]=1 while stk: u,flag,father=stk.pop() if flag: for v in g[u]: if v!=father: size[u]+=size[v] if son[u]==0 or size[v]>size[son[u]]: son[u]=v else: stk.append([u,1,father]) for v in g[u]: if v!=father: stk.append([v,0,u]) fa[v]=u dep[v]=dep[u]+1 stk=[[root,root]] tot=1 while stk: u,tops=stk.pop() dfn[u]=tot rank[tot]=u tot+=1 top[u]=tops if son[u]==0: continue for v in g[u]: if v!=fa[u] and v!=son[u]: stk.append([v,v]) stk.append([son[u],tops]) def lca(self,u,v): #求u和v的最近公共祖先节点 fa=self.fa;size=self.size;dep=self.dep;son=self.son dfn=self.dfn;top=self.top;rank=self.rank while top[u]!=top[v]: if dep[top[u]]>dep[top[v]]: u=fa[top[u]] else: v=fa[top[v]] return v if dep[u]>dep[v] else u def dis(self,u,v): dep=self.dep return dep[u]+dep[v]-2*dep[self.lca(u,v)] def kth_fa(self,root,k): #求root节点的第k个祖先 fa=self.fa;size=self.size;dep=self.dep;son=self.son dfn=self.dfn;top=self.top;rank=self.rank if k>=dep[root]: #无第k个祖先返回-1 return -1 while True: u=top[root] if dfn[root]-k>=dfn[u]: return rank[dfn[root]-k] k-=dfn[root]-dfn[u]+1 root=fa[u] def route_query(self,u,v): #查询u到v简单路径 fa=self.fa;size=self.size;dep=self.dep;son=self.son dfn=self.dfn;top=self.top;rank=self.rank route=[] while top[u]!=top[v]: if dep[top[u]]dep[v]: u,v=v,u route.append((dfn[u],dfn[v])) return route def path(self,start,end): #得到start到end简单路径的所有节点 fa=self.fa;size=self.size;dep=self.dep;son=self.son dfn=self.dfn;top=self.top;rank=self.rank mid=self.lca(start,end) ps=[] while start!=mid: ps.append(start) start=fa[start] pe=[] while end!=mid: pe.append(end) end=fa[end] return ps+[mid]+pe[::-1] n=ii() s=[0]+li() c=[0]+li() g=[[] for _ in range(n+1)] for _ in range(n-1): u,v=li() g[u]+=[v] g[v]+=[u] hld=HLD(g,1) nums=[(0,0,0,0) for _ in range(n+1)] for i in range(1,n+1): nums[hld.dfn[i]]=(s[i]%mod,c[i],0,1) def op2(x,y): return ((x[0]+y[0])%mod,(x[1]+y[1])%mod,(x[2]+y[2])%mod,x[3]+y[3]) def mapping(f,s): return ((s[0]+f[0]*s[2]+f[1]*s[1]+f[0]*f[1]*s[3])%mod,(s[1]+f[0]*s[3])%mod,(s[2]+f[1]*s[3])%mod,s[3]) def composition(x,y): return ((x[0]+y[0])%mod,(x[1]+y[1])%mod) seg=LazySegTree(nums,op2,(0,0,0,0),mapping,composition,(0,0)) q=ii() # for _ in range(q): # s=li() # if s[0]==1: # l,r,x=s[1:] # seg.apply(l-1,r-1,(x%mod,0)) # elif s[0]==2: # l,r,x=s[1:] # seg.apply(l-1,r-1,(0,x%mod)) # else: # l,r=s[1:] # print(seg.prod(l-1,r-1)[0]%mod) for _ in range(q): op=li() if op[0]==0: x,y,z=op[1:] for u,v in hld.route_query(x,y): seg.apply(u,v,(0,z%mod)) else: x,y=op[1:] res=0 for u,v in hld.route_query(x,y): res=(res+seg.prod(u,v)[0])%mod print(res)