#line 2 "convolution/convolution.hpp" #include #include #include #line 2 "convolution/ntt.hpp" #line 4 "convolution/ntt.hpp" #include #line 6 "convolution/ntt.hpp" #include #line 8 "convolution/ntt.hpp" #line 2 "math/internal_math.hpp" #line 4 "math/internal_math.hpp" namespace ebi { namespace internal { constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; if (m == 880803841) return 26; if (m == 924844033) return 5; return -1; } template constexpr int primitive_root = primitive_root_constexpr(m); } // namespace internal } // namespace ebi #line 2 "modint/base.hpp" #include #include #include namespace ebi { template concept Modint = requires(T a, T b) { a + b; a - b; a * b; a / b; a.inv(); a.val(); a.pow(std::declval()); T::mod(); }; template std::istream &operator>>(std::istream &os, mint &a) { long long x; os >> x; a = x; return os; } template std::ostream &operator<<(std::ostream &os, const mint &a) { return os << a.val(); } } // namespace ebi #line 2 "template/int_alias.hpp" #include namespace ebi { using ld = long double; using std::size_t; using i8 = std::int8_t; using u8 = std::uint8_t; using i16 = std::int16_t; using u16 = std::uint16_t; using i32 = std::int32_t; using u32 = std::uint32_t; using i64 = std::int64_t; using u64 = std::uint64_t; using i128 = __int128_t; using u128 = __uint128_t; } // namespace ebi #line 12 "convolution/ntt.hpp" namespace ebi { namespace internal { template > struct ntt_info { static constexpr int rank2 = std::countr_zero((unsigned int)(mint::mod() - 1)); std::array root, inv_root; ntt_info() { root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2); inv_root[rank2] = root[rank2].inv(); for (int i = rank2 - 1; i >= 0; i--) { root[i] = root[i + 1] * root[i + 1]; inv_root[i] = inv_root[i + 1] * inv_root[i + 1]; } } }; template void fft2(std::vector& a) { static const ntt_info info; int n = int(a.size()); int bit_size = std::countr_zero(a.size()); assert(n == 1 << bit_size); for (int bit = bit_size - 1; bit >= 0; bit--) { int m = 1 << bit; for (int i = 0; i < n; i += 2 * m) { mint w = 1; for (int j = 0; j < m; j++) { mint p1 = a[i + j]; mint p2 = a[i + j + m]; a[i + j] = p1 + p2; a[i + j + m] = (p1 - p2) * w; w *= info.root[bit + 1]; } } } } template void ifft2(std::vector& a) { static const ntt_info info; int n = int(a.size()); int bit_size = std::countr_zero(a.size()); assert(n == 1 << bit_size); for (int bit = 0; bit < bit_size; bit++) { for (int i = 0; i < n / (1 << (bit + 1)); i++) { mint w = 1; for (int j = 0; j < (1 << bit); j++) { int idx = i * (1 << (bit + 1)) + j; int jdx = idx + (1 << bit); mint p1 = a[idx]; mint p2 = w * a[jdx]; a[idx] = p1 + p2; a[jdx] = p1 - p2; w *= info.inv_root[bit + 1]; } } } } template void fft4(std::vector& a) { static const ntt_info info; const u32 mod = mint::mod(); const u64 iw = info.root[2].val(); int n = int(a.size()); int bit_size = std::countr_zero(a.size()); assert(n == 1 << bit_size); int len = bit_size; while (len > 0) { if (len == 1) { for (int i = 0; i < n; i += 2) { mint p0 = a[i]; mint p1 = a[i + 1]; a[i] = p0 + p1; a[i + 1] = p0 - p1; } len--; } else { int m = 1 << (len - 2); u64 w1 = 1, w2 = 1, w3 = 1, iw1 = iw, iw3 = iw; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j += 4 * m) { int i0 = i + j, i1 = i0 + m, i2 = i1 + m, i3 = i2 + m; u32 a0 = a[i0].val(); u32 a1 = a[i1].val(); u32 a2 = a[i2].val(); u32 a3 = a[i3].val(); u32 a0_plus_a2 = a0 + a2; u32 a1_plus_a3 = a1 + a3; u32 a0_minus_a2 = a0 + mod - a2; u32 a1_minus_a3 = a1 + mod - a3; a[i0] = a0_plus_a2 + a1_plus_a3; a[i1] = a0_minus_a2 * w1 + a1_minus_a3 * iw1; a[i2] = (a0_plus_a2 + 2 * mod - a1_plus_a3) * w2; a[i3] = a0_minus_a2 * w3 + (2 * mod - a1_minus_a3) * iw3; } w1 = w1 * info.root[len].val() % mod; w2 = w1 * w1 % mod; w3 = w2 * w1 % mod; iw1 = iw * w1 % mod; iw3 = iw * w3 % mod; } len -= 2; } } } template void ifft4(std::vector& a) { static const ntt_info info; const u32 mod = mint::mod(); const u64 mod2 = u64(mod) * mod; const u64 iw = info.inv_root[2].val(); int n = int(a.size()); int bit_size = std::countr_zero(a.size()); assert(n == 1 << bit_size); int len = (bit_size & 1 ? 1 : 2); while (len <= bit_size) { if (len == 1) { for (int i = 0; i < n; i += 2) { mint a0 = a[i]; mint a1 = a[i + 1]; a[i] = a0 + a1; a[i + 1] = a0 - a1; } } else { int m = 1 << (len - 2); u64 w1 = 1, w2 = 1, w3 = 1, iw1 = iw, iw3 = iw; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j += 4 * m) { int i0 = i + j, i1 = i0 + m, i2 = i1 + m, i3 = i2 + m; u64 a0 = a[i0].val(); u64 a1 = w1 * a[i1].val(); u64 a2 = w2 * a[i2].val(); u64 a3 = w3 * a[i3].val(); u64 b1 = iw1 * a[i1].val(); u64 b3 = iw3 * a[i3].val(); u64 a0_plus_a2 = a0 + a2; u64 a1_plus_a3 = a1 + a3; u64 a0_minus_a2 = a0 + mod2 - a2; u64 b1_minus_b3 = b1 + mod2 - b3; a[i0] = a0_plus_a2 + a1_plus_a3; a[i1] = a0_minus_a2 + b1_minus_b3; a[i2] = a0_plus_a2 + mod2 * 2 - a1_plus_a3; a[i3] = a0_minus_a2 + mod2 * 2 - b1_minus_b3; } w1 = w1 * info.inv_root[len].val() % mod; w2 = w1 * w1 % mod; w3 = w2 * w1 % mod; iw1 = iw * w1 % mod; iw3 = iw * w3 % mod; } } len += 2; } } } // namespace internal } // namespace ebi #line 9 "convolution/convolution.hpp" namespace ebi { template std::vector convolution_naive(const std::vector& f, const std::vector& g) { if (f.empty() || g.empty()) return {}; int n = int(f.size()), m = int(g.size()); std::vector c(n + m - 1); if (n < m) { for (int j = 0; j < m; j++) { for (int i = 0; i < n; i++) { c[i + j] += f[i] * g[j]; } } } else { for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { c[i + j] += f[i] * g[j]; } } } return c; } template std::vector convolution(const std::vector& f, const std::vector& g) { if (f.empty() || g.empty()) return {}; if (std::min(f.size(), g.size()) < 60) return convolution_naive(f, g); int n = (int)std::bit_ceil(f.size() + g.size() - 1); std::vector a(n), b(n); std::copy(f.begin(), f.end(), a.begin()); std::copy(g.begin(), g.end(), b.begin()); internal::fft4(a); internal::fft4(b); for (int i = 0; i < n; i++) { a[i] *= b[i]; } internal::ifft4(a); a.resize(f.size() + g.size() - 1); mint inv_n = mint(n).inv(); for (auto& x : a) x *= inv_n; return a; } } // namespace ebi #line 2 "fps/fps.hpp" #line 5 "fps/fps.hpp" #include #line 7 "fps/fps.hpp" #line 9 "fps/fps.hpp" namespace ebi { template struct FormalPowerSeries : std::vector { private: using std::vector::vector; using std::vector::vector::operator=; using FPS = FormalPowerSeries; public: FormalPowerSeries(const std::vector &a) { *this = a; } FPS operator+(const FPS &rhs) const noexcept { return FPS(*this) += rhs; } FPS operator-(const FPS &rhs) const noexcept { return FPS(*this) -= rhs; } FPS operator*(const FPS &rhs) const noexcept { return FPS(*this) *= rhs; } FPS operator/(const FPS &rhs) const noexcept { return FPS(*this) /= rhs; } FPS operator%(const FPS &rhs) const noexcept { return FPS(*this) %= rhs; } FPS operator+(const mint &rhs) const noexcept { return FPS(*this) += rhs; } FPS operator-(const mint &rhs) const noexcept { return FPS(*this) -= rhs; } FPS operator*(const mint &rhs) const noexcept { return FPS(*this) *= rhs; } FPS operator/(const mint &rhs) const noexcept { return FPS(*this) /= rhs; } FPS &operator+=(const FPS &rhs) noexcept { if (this->size() < rhs.size()) this->resize(rhs.size()); for (int i = 0; i < (int)rhs.size(); ++i) { (*this)[i] += rhs[i]; } return *this; } FPS &operator-=(const FPS &rhs) noexcept { if (this->size() < rhs.size()) this->resize(rhs.size()); for (int i = 0; i < (int)rhs.size(); ++i) { (*this)[i] -= rhs[i]; } return *this; } FPS &operator*=(const FPS &); FPS &operator/=(const FPS &rhs) noexcept { int n = deg() - 1; int m = rhs.deg() - 1; if (n < m) { *this = {}; return *this; } *this = (*this).rev() * rhs.rev().inv(n - m + 1); (*this).resize(n - m + 1); std::reverse((*this).begin(), (*this).end()); return *this; } FPS &operator%=(const FPS &rhs) noexcept { *this -= *this / rhs * rhs; shrink(); return *this; } FPS &operator+=(const mint &rhs) noexcept { if (this->empty()) this->resize(1); (*this)[0] += rhs; return *this; } FPS &operator-=(const mint &rhs) noexcept { if (this->empty()) this->resize(1); (*this)[0] -= rhs; return *this; } FPS &operator*=(const mint &rhs) noexcept { for (int i = 0; i < deg(); ++i) { (*this)[i] *= rhs; } return *this; } FPS &operator/=(const mint &rhs) noexcept { mint inv_rhs = rhs.inv(); for (int i = 0; i < deg(); ++i) { (*this)[i] *= inv_rhs; } return *this; } FPS operator>>(int d) const { if (deg() <= d) return {}; FPS f = *this; f.erase(f.begin(), f.begin() + d); return f; } FPS operator<<(int d) const { FPS f = *this; f.insert(f.begin(), d, 0); return f; } FPS operator-() const { FPS g(this->size()); for (int i = 0; i < (int)this->size(); i++) g[i] = -(*this)[i]; return g; } FPS pre(int sz) const { return FPS(this->begin(), this->begin() + std::min(deg(), sz)); } FPS rev() const { auto f = *this; std::reverse(f.begin(), f.end()); return f; } FPS differential() const { int n = deg(); FPS g(std::max(0, n - 1)); for (int i = 0; i < n - 1; i++) { g[i] = (*this)[i + 1] * (i + 1); } return g; } FPS integral() const { int n = deg(); FPS g(n + 1); g[0] = 0; if (n > 0) g[1] = 1; auto mod = mint::mod(); for (int i = 2; i <= n; i++) g[i] = (-g[mod % i]) * (mod / i); for (int i = 0; i < n; i++) g[i + 1] *= (*this)[i]; return g; } FPS inv(int d = -1) const { int n = 1; if (d < 0) d = deg(); FPS g(n); g[0] = (*this)[0].inv(); while (n < d) { n <<= 1; g = (g * 2 - g * g * this->pre(n)).pre(n); } g.resize(d); return g; } FPS log(int d = -1) const { assert((*this)[0].val() == 1); if (d < 0) d = deg(); return ((*this).differential() * (*this).inv(d)).pre(d - 1).integral(); } FPS exp(int d = -1) const { assert((*this)[0].val() == 0); int n = 1; if (d < 0) d = deg(); FPS g(n); g[0] = 1; while (n < d) { n <<= 1; g = (g * (this->pre(n) - g.log(n) + 1)).pre(n); } g.resize(d); return g; } FPS pow(long long k, int d = -1) const { assert(k >= 0); int n = deg(); if (d < 0) d = n; if (k == 0) { FPS f(d); if (d > 0) f[0] = 1; return f; } int low = d; for (int i = n - 1; i >= 0; i--) if ((*this)[i] != 0) low = i; if (low >= (d + k - 1) / k) return FPS(d, 0); int offset = k * low; mint c = (*this)[low]; FPS g(d - offset); for (int i = 0; i < std::min(n - low, d - offset); i++) { g[i] = (*this)[i + low]; } g /= c; g = g.pow_1(k); return (g << offset) * c.pow(k); } FPS pow_1(mint k, int d = -1) const { assert((*this)[0] == 1); return ((*this).log(d) * k).exp(d); } FPS pow_newton(long long k, int d = -1) const { assert(k >= 0); const int n = deg(); if (d < 0) d = n; if (k == 0) { FPS f(d); if (d > 0) f[0] = 1; return f; } for (int i = 0; i < n; i++) { if ((*this)[i] != 0) { mint rev = (*this)[i].inv(); FPS f = (((*this * rev) >> i).log(d) * k).exp(d); f *= (*this)[i].pow(k); f = (f << (i * k)).pre(d); if (f.deg() < d) f.resize(d); return f; } if (i + 1 >= (d + k - 1) / k) break; } return FPS(d); } int deg() const { return (*this).size(); } void shrink() { while ((!this->empty()) && this->back() == 0) this->pop_back(); } int count_terms() const { int c = 0; for (int i = 0; i < deg(); i++) { if ((*this)[i] != 0) c++; } return c; } std::optional sqrt(int d = -1) const; static FPS exp_x(int n) { FPS f(n); mint fact = 1; for (int i = 1; i < n; i++) fact *= i; f[n - 1] = fact.inv(); for (int i = n - 1; i >= 0; i--) f[i - 1] = f[i] * i; return f; } void fft(); void ifft(); }; } // namespace ebi #line 2 "matrix/black_box_linear_algebra.hpp" #line 5 "matrix/black_box_linear_algebra.hpp" #line 2 "fps/berlekamp_massey.hpp" #line 5 "fps/berlekamp_massey.hpp" #line 7 "fps/berlekamp_massey.hpp" namespace ebi { template std::vector berlekamp_massey(const std::vector &s) { std::vector C = {1}, B = {1}; int L = 0, m = 1; mint b = 1; for (int n = 0; n < (int)s.size(); n++) { mint d = s[n]; for (int i = 1; i <= L; i++) { d += s[n - i] * C[i]; } if (d == 0) { m++; } else if (2 * L <= n) { auto T = C; mint f = d / b; C.resize((int)B.size() + m); for (int i = 0; i < (int)B.size(); i++) { C[i + m] -= f * B[i]; } L = n + 1 - L; B = T; b = d; m = 1; } else { mint f = d / b; for (int i = 0; i < (int)B.size(); i++) { C[i + m] -= f * B[i]; } m++; } } return C; } } // namespace ebi #line 2 "fps/poly_mod_pow.hpp" #line 5 "fps/poly_mod_pow.hpp" namespace ebi { template FormalPowerSeries poly_mod_pow(FormalPowerSeries f, long long k, const FormalPowerSeries &g) { FormalPowerSeries res = {1}; while (k > 0) { if (k & 1) { res *= f; res %= g; res.shrink(); } f *= f; f %= g; f.shrink(); k >>= 1; } return res; } } // namespace ebi #line 2 "utility/random_number_generator.hpp" #line 4 "utility/random_number_generator.hpp" #include namespace ebi { struct random_number_generator { random_number_generator(int seed = -1) { if (seed < 0) seed = rnd(); mt.seed(seed); } void set_seed(int seed) { mt.seed(seed); } template T get(T a, T b) { std::uniform_int_distribution dist(a, b - 1); return dist(mt); } private: std::mt19937_64 mt; std::random_device rnd; }; } // namespace ebi #line 10 "matrix/black_box_linear_algebra.hpp" namespace ebi { template std::vector matrix_minimum_poly(int n, F Ax) { static random_number_generator rng; std::vector s(2 * n + 10, 0), u(n), b(n); for (int i = 0; i < n; i++) { u[i] = rng.get(0, mint::mod()); b[i] = rng.get(0, mint::mod()); } for (int i = 0; i < 2 * n + 10; i++) { for (int j = 0; j < n; j++) { s[i] += u[j] * b[j]; } b = Ax(b); } auto c = berlekamp_massey(s); std::reverse(c.begin(), c.end()); return c; } template std::vector pow(int n, F Ax, const std::vector &b, long long k) { assert(n == (int)b.size()); using FPS = FormalPowerSeries; auto g = matrix_minimum_poly(n, Ax); auto c = poly_mod_pow({0, 1}, k, g); FPS res(n, 0), Ab = b; for (int i = 0; i < (int)c.size(); i++) { res += Ab * c[i]; Ab = FPS(Ax(Ab)); } return res; } template mint det(int n, F Ax) { static random_number_generator rng; std::vector d(n); mint r = 1; for (int i = 0; i < n; i++) { d[i] = rng.get(1, mint::mod()); r *= d[i]; } auto ADx = [&](std::vector v) -> std::vector { assert(n == (int)v.size()); for (int i = 0; i < n; i++) { v[i] *= d[i]; } return Ax(v); }; auto f = matrix_minimum_poly(n, ADx); mint res = ((int)f.size() == n + 1 ? f[0] : 0); if (n % 2 == 1) res = -res; return res / r; } } // namespace ebi #line 2 "modint/modint.hpp" #line 5 "modint/modint.hpp" #line 7 "modint/modint.hpp" namespace ebi { template struct static_modint { private: using modint = static_modint; public: static constexpr int mod() { return m; } static constexpr modint raw(int v) { modint x; x._v = v; return x; } constexpr static_modint() : _v(0) {} template constexpr static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template constexpr static_modint(T v) { _v = (unsigned int)(v % umod()); } constexpr unsigned int val() const { return _v; } constexpr unsigned int value() const { return val(); } constexpr modint &operator++() { _v++; if (_v == umod()) _v = 0; return *this; } constexpr modint &operator--() { if (_v == 0) _v = umod(); _v--; return *this; } constexpr modint operator++(int) { modint res = *this; ++*this; return res; } constexpr modint operator--(int) { modint res = *this; --*this; return res; } constexpr modint &operator+=(const modint &rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } constexpr modint &operator-=(const modint &rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } constexpr modint &operator*=(const modint &rhs) { unsigned long long x = _v; x *= rhs._v; _v = (unsigned int)(x % (unsigned long long)umod()); return *this; } constexpr modint &operator/=(const modint &rhs) { return *this = *this * rhs.inv(); } constexpr modint operator+() const { return *this; } constexpr modint operator-() const { return modint() - *this; } constexpr modint pow(long long n) const { assert(0 <= n); modint x = *this, res = 1; while (n) { if (n & 1) res *= x; x *= x; n >>= 1; } return res; } constexpr modint inv() const { assert(_v); return pow(umod() - 2); } friend modint operator+(const modint &lhs, const modint &rhs) { return modint(lhs) += rhs; } friend modint operator-(const modint &lhs, const modint &rhs) { return modint(lhs) -= rhs; } friend modint operator*(const modint &lhs, const modint &rhs) { return modint(lhs) *= rhs; } friend modint operator/(const modint &lhs, const modint &rhs) { return modint(lhs) /= rhs; } friend bool operator==(const modint &lhs, const modint &rhs) { return lhs.val() == rhs.val(); } friend bool operator!=(const modint &lhs, const modint &rhs) { return !(lhs == rhs); } private: unsigned int _v = 0; static constexpr unsigned int umod() { return m; } }; using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; } // namespace ebi #line 1 "template/template.hpp" #include #define rep(i, a, n) for (int i = (int)(a); i < (int)(n); i++) #define rrep(i, a, n) for (int i = ((int)(n)-1); i >= (int)(a); i--) #define Rep(i, a, n) for (i64 i = (i64)(a); i < (i64)(n); i++) #define RRep(i, a, n) for (i64 i = ((i64)(n)-i64(1)); i >= (i64)(a); i--) #define all(v) (v).begin(), (v).end() #define rall(v) (v).rbegin(), (v).rend() #line 2 "template/debug_template.hpp" #line 4 "template/debug_template.hpp" namespace ebi { #ifdef LOCAL #define debug(...) \ std::cerr << "LINE: " << __LINE__ << " [" << #__VA_ARGS__ << "]:", \ debug_out(__VA_ARGS__) #else #define debug(...) #endif void debug_out() { std::cerr << std::endl; } template void debug_out(Head h, Tail... t) { std::cerr << " " << h; if (sizeof...(t) > 0) std::cerr << " :"; debug_out(t...); } } // namespace ebi #line 2 "template/io.hpp" #line 7 "template/io.hpp" namespace ebi { template std::ostream &operator<<(std::ostream &os, const std::pair &pa) { return os << pa.first << " " << pa.second; } template std::istream &operator>>(std::istream &os, std::pair &pa) { return os >> pa.first >> pa.second; } template std::ostream &operator<<(std::ostream &os, const std::vector &vec) { for (std::size_t i = 0; i < vec.size(); i++) os << vec[i] << (i + 1 == vec.size() ? "" : " "); return os; } template std::istream &operator>>(std::istream &os, std::vector &vec) { for (T &e : vec) std::cin >> e; return os; } template std::ostream &operator<<(std::ostream &os, const std::optional &opt) { if (opt) { os << opt.value(); } else { os << "invalid value"; } return os; } void fast_io() { std::cout << std::fixed << std::setprecision(15); std::cin.tie(nullptr); std::ios::sync_with_stdio(false); } } // namespace ebi #line 2 "template/utility.hpp" #line 5 "template/utility.hpp" #line 2 "graph/base.hpp" #line 5 "graph/base.hpp" #include #line 7 "graph/base.hpp" #line 2 "data_structure/simple_csr.hpp" #line 6 "data_structure/simple_csr.hpp" namespace ebi { template struct simple_csr { simple_csr() = default; simple_csr(int n, const std::vector>& elements) : start(n + 1, 0), elist(elements.size()) { for (auto e : elements) { start[e.first + 1]++; } for (auto i : std::views::iota(0, n)) { start[i + 1] += start[i]; } auto counter = start; for (auto [i, e] : elements) { elist[counter[i]++] = e; } } simple_csr(const std::vector>& es) : start(es.size() + 1, 0) { int n = es.size(); for (auto i : std::views::iota(0, n)) { start[i + 1] = (int)es[i].size() + start[i]; } elist.resize(start.back()); for (auto i : std::views::iota(0, n)) { std::copy(es[i].begin(), es[i].end(), elist.begin() + start[i]); } } int size() const { return (int)start.size() - 1; } const auto operator[](int i) const { return std::ranges::subrange(elist.begin() + start[i], elist.begin() + start[i + 1]); } auto operator[](int i) { return std::ranges::subrange(elist.begin() + start[i], elist.begin() + start[i + 1]); } const auto operator()(int i, int l, int r) const { return std::ranges::subrange(elist.begin() + start[i] + l, elist.begin() + start[i + 1] + r); } auto operator()(int i, int l, int r) { return std::ranges::subrange(elist.begin() + start[i] + l, elist.begin() + start[i + 1] + r); } private: std::vector start; std::vector elist; }; } // namespace ebi #line 9 "graph/base.hpp" namespace ebi { template struct Edge { int from, to; T cost; int id; }; template struct Graph { using cost_type = E; using edge_type = Edge; Graph(int n_) : n(n_) {} Graph() = default; void add_edge(int u, int v, cost_type c) { buff.emplace_back(u, edge_type{u, v, c, m}); edges.emplace_back(edge_type{u, v, c, m++}); } void add_undirected_edge(int u, int v, cost_type c) { buff.emplace_back(u, edge_type{u, v, c, m}); buff.emplace_back(v, edge_type{v, u, c, m}); edges.emplace_back(edge_type{u, v, c, m}); m++; } void read_tree(int offset = 1, bool is_weighted = false) { read_graph(n - 1, offset, false, is_weighted); } void read_parents(int offset = 1) { for (auto i : std::views::iota(1, n)) { int p; std::cin >> p; p -= offset; add_undirected_edge(p, i, 1); } build(); } void read_graph(int e, int offset = 1, bool is_directed = false, bool is_weighted = false) { for (int i = 0; i < e; i++) { int u, v; std::cin >> u >> v; u -= offset; v -= offset; if (is_weighted) { cost_type c; std::cin >> c; if (is_directed) { add_edge(u, v, c); } else { add_undirected_edge(u, v, c); } } else { if (is_directed) { add_edge(u, v, 1); } else { add_undirected_edge(u, v, 1); } } } build(); } void build() { assert(!prepared); csr = simple_csr(n, buff); buff.clear(); prepared = true; } int size() const { return n; } int node_number() const { return n; } int edge_number() const { return m; } edge_type get_edge(int i) const { return edges[i]; } std::vector get_edges() const { return edges; } const auto operator[](int i) const { return csr[i]; } auto operator[](int i) { return csr[i]; } private: int n, m = 0; std::vector> buff; std::vector edges; simple_csr csr; bool prepared = false; }; } // namespace ebi #line 8 "template/utility.hpp" namespace ebi { template inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } template T safe_ceil(T a, T b) { if (a % b == 0) return a / b; else if (a >= 0) return (a / b) + 1; else return -((-a) / b); } template T safe_floor(T a, T b) { if (a % b == 0) return a / b; else if (a >= 0) return a / b; else return -((-a) / b) - 1; } constexpr i64 LNF = std::numeric_limits::max() / 4; constexpr int INF = std::numeric_limits::max() / 2; const std::vector dy = {1, 0, -1, 0, 1, 1, -1, -1}; const std::vector dx = {0, 1, 0, -1, 1, -1, 1, -1}; } // namespace ebi #line 6 "a.cpp" namespace ebi { template FormalPowerSeries &FormalPowerSeries::operator*=( const FormalPowerSeries &rhs) { *this = convolution_naive(*this, rhs); return *this; } template void FormalPowerSeries::fft() { assert(false); } template void FormalPowerSeries::ifft() { assert(false); } } // namespace ebi namespace ebi { using mint = modint1000000007; void main_() { int k, m; i64 n; std::cin >> k >> m >> n; const int sz = k * k; std::vector> a; rep(i, 0, m) { int p, q, r; std::cin >> p >> q >> r; p--; q--; r--; a.emplace_back(q + r * k, p + q * k); } std::sort(all(a)); a.erase(std::unique(all(a)), a.end()); auto Ax = [&](const std::vector &b) -> std::vector { std::vector res(sz, 0); for (auto [i, j] : a) { res[i] += b[j]; } return res; }; std::vector b(sz, 0); rep(i, 0, k) { b[i * k] = 1; } auto res = pow(sz, Ax, b, n - 2); mint ans = 0; rep(i, 0, k) { ans += res[i]; } std::cout << ans << '\n'; } } // namespace ebi int main() { ebi::fast_io(); int t = 1; // std::cin >> t; while (t--) { ebi::main_(); } return 0; }