#include using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 998244353; // constexpr int MOD = 1000000007; constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1}; constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}; constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1}; template inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; } template inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; // https://github.com/ei1333/library/blob/7da7fca8cebc1d17a048c9483f07e39c8e465cdf/math/number-theory/fast-prime-factorization.hpp namespace FastPrimeFactorization { template struct UnsafeMod { UnsafeMod() : x(0) {} UnsafeMod(word _x) : x(init(_x)) {} bool operator==(const UnsafeMod &rhs) const { return x == rhs.x; } bool operator!=(const UnsafeMod &rhs) const { return x != rhs.x; } UnsafeMod &operator+=(const UnsafeMod &rhs) { if ((x += rhs.x) >= mod) x -= mod; return *this; } UnsafeMod &operator-=(const UnsafeMod &rhs) { if (sword(x -= rhs.x) < 0) x += mod; return *this; } UnsafeMod &operator*=(const UnsafeMod &rhs) { x = reduce(dword(x) * rhs.x); return *this; } UnsafeMod operator+(const UnsafeMod &rhs) const { return UnsafeMod(*this) += rhs; } UnsafeMod operator-(const UnsafeMod &rhs) const { return UnsafeMod(*this) -= rhs; } UnsafeMod operator*(const UnsafeMod &rhs) const { return UnsafeMod(*this) *= rhs; } UnsafeMod pow(uint64_t e) const { UnsafeMod ret(1); for (UnsafeMod base = *this; e; e >>= 1, base *= base) { if (e & 1) ret *= base; } return ret; } word get() const { return reduce(x); } static constexpr int word_bits = sizeof(word) * 8; static word modulus() { return mod; } static word init(word w) { return reduce(dword(w) * r2); } static void set_mod(word m) { mod = m; inv = mul_inv(mod); r2 = -dword(mod) % mod; } static word reduce(dword x) { word y = word(x >> word_bits) - word((dword(word(x) * inv) * mod) >> word_bits); return sword(y) < 0 ? y + mod : y; } static word mul_inv(word n, int e = 6, word x = 1) { return !e ? x : mul_inv(n, e - 1, x * (2 - x * n)); } static word mod, inv, r2; word x; }; using uint128_t = __uint128_t; using Mod64 = UnsafeMod; template <> uint64_t Mod64::mod = 0; template <> uint64_t Mod64::inv = 0; template <> uint64_t Mod64::r2 = 0; using Mod32 = UnsafeMod; template <> uint32_t Mod32::mod = 0; template <> uint32_t Mod32::inv = 0; template <> uint32_t Mod32::r2 = 0; bool miller_rabin_primality_test_uint64(uint64_t n) { Mod64::set_mod(n); uint64_t d = n - 1; while (d % 2 == 0) d /= 2; Mod64 e{1}, rev{n - 1}; // http://miller-rabin.appspot.com/ < 2^64 for (uint64_t a : {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) { if (n <= a) break; uint64_t t = d; Mod64 y = Mod64(a).pow(t); while (t != n - 1 && y != e && y != rev) { y *= y; t *= 2; } if (y != rev && t % 2 == 0) return false; } return true; } bool miller_rabin_primality_test_uint32(uint32_t n) { Mod32::set_mod(n); uint32_t d = n - 1; while (d % 2 == 0) d /= 2; Mod32 e{1}, rev{n - 1}; for (uint32_t a : {2, 7, 61}) { if (n <= a) break; uint32_t t = d; Mod32 y = Mod32(a).pow(t); while (t != n - 1 && y != e && y != rev) { y *= y; t *= 2; } if (y != rev && t % 2 == 0) return false; } return true; } bool is_prime(uint64_t n) { if (n == 2) return true; if (n == 1 || n % 2 == 0) return false; if (n < uint64_t(1) << 31) return miller_rabin_primality_test_uint32(n); return miller_rabin_primality_test_uint64(n); } uint64_t pollard_rho(uint64_t n) { if (is_prime(n)) return n; if (n % 2 == 0) return 2; Mod64::set_mod(n); uint64_t d; Mod64 one{1}; for (Mod64 c{one};; c += one) { Mod64 x{2}, y{2}; do { x = x * x + c; y = y * y + c; y = y * y + c; d = __gcd((x - y).get(), n); } while (d == 1); if (d < n) return d; } assert(0); } vector prime_factor(uint64_t n) { if (n <= 1) return {}; uint64_t p = pollard_rho(n); if (p == n) return {p}; auto l = prime_factor(p); auto r = prime_factor(n / p); copy(begin(r), end(r), back_inserter(l)); return l; } }; // namespace FastPrimeFactorization int main() { ll n; cin >> n; map pf; for (const ll p : FastPrimeFactorization::prime_factor(n)) ++pf[p]; ll ans = 0; for (int l = ranges::max(pf | views::values); l >= 1; --l) { array ways{1, 0}; for (const int num : pf | views::values) { vector dp(num + 1, vector(num + 1, 0LL)); FOR(i, 1, num + 1) dp[num - i][i] = 1; for (int pos = l - 2; pos >= 0; --pos) { vector nxt(num + 1, vector(num + 1, 0LL)); REP(i, num + 1) for (int j = 0; i + j <= num; ++j) { if (dp[i][j] == 0) continue; for (int k = 0; k <= i && k <= j; ++k) { nxt[i - k][k] += dp[i][j]; } } dp.swap(nxt); } array tmp{}; REP(x, 2) REP(j, num + 1) tmp[x | j >= 1] += ways[x] * dp[0][j]; ways.swap(tmp); } ans += ways[true]; } cout << ans << '\n'; return 0; }