#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #pragma GCC target("avx") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") //if(a < 0 || h <= a || b < 0 || w <= b)return; // string abc = "abcdefghijklmnopqrstuvwxyz"; // string abc = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; using namespace std; using namespace atcoder; using ll = long long; using ld = long double; using ull = unsigned long long; using mint = modint998244353; //using mint = modint1000000007; template using pq = priority_queue;//降順?(最大取り出し) template using pqg = priority_queue, greater>;//昇順?(最小取り出し) template using vector2 = vector>; template using vector3 = vector>>; template using vector4 = vector>>>; template using vector5 = vector>>>>; template using vector6 = vector>>>>>; template using pairs = pair; #define rep(i, n) for (ll i = 0; i < ll(n); i++) #define rep1(i,n) for(int i = 1;i <= int(n);i++) #define repm(i, m, n) for (int i = (m); (i) < int(n);(i)++) #define repmr(i, m, n) for (int i = (m) - 1; (i) >= int(n);(i)--) #define rep0(i,n) for(int i = n - 1;i >= 0;i--) #define rep01(i,n) for(int i = n;i >= 1;i--) // ユークリッドの互除法による最大公約数算出 ll GCD(ll a,ll b){ if(b == 0)return a; return GCD(b, a % b); } //拡張ユークリッドの互除法による(ax + by = GCD(a,b))を満たすx,yの算出 pair extgcd(long long a, long long b) { if (b == 0) return make_pair(1, 0); long long x, y; tie(y, x) = extgcd(b, a % b); y -= a / b * x; return make_pair(x, y); } struct UnionFind { vector par; // par[i]:iの親の番号 (例) par[3] = 2 : 3の親が2 vector nu; UnionFind(int N) : par(N) , nu(N){ //最初は全てが根であるとして初期化 for(int i = 0; i < N; i++) par[i] = i; for(int i = 0;i < N;i++)nu[i] = 1; } int root(int x) { // データxが属する木の根を再帰で得る:root(x) = {xの木の根} if (par[x] == x) return x; return par[x] = root(par[x]); } void unite(int x, int y) { // xとyの木を併合 int rx = root(x); //xの根をrx int ry = root(y); //yの根をry if (rx == ry) return; //xとyの根が同じ(=同じ木にある)時はそのまま nu[rx] += nu[ry]; nu[ry] = nu[rx]; par[rx] = ry; //xとyの根が同じでない(=同じ木にない)時:xの根rxをyの根ryにつける } bool same(int x, int y) { // 2つのデータx, yが属する木が同じならtrueを返す int rx = root(x); int ry = root(y); return rx == ry; } int num(int x){//根がxである頂点の数を返す return nu[x]; } }; ll n; //座標圧縮 vector Ccomp(vector a){ vector b = a; sort(b.begin(),b.end()); b.erase(unique(b.begin(),b.end()),b.end());//ダブり消去 vector rtn; rep(j,a.size()){ ll pb = lower_bound(b.begin(),b.end(),a[j]) - b.begin(); rtn.push_back(pb); } return rtn; } /// ここから//////////////////////////////////////////// using F = ll; using S = ll; string s; ll modPow(ll a, ll n, ll mod) { if(mod==1) return 0;ll ret = 1; ll p = a % mod; while (n) { if (n & 1) ret = ret * p % mod; p = p * p % mod; n >>= 1; } return ret; } void cincout(){ ios::sync_with_stdio(false); std::cin.tie(nullptr); cout<< fixed << setprecision(15); } //seg,遅延segの設定-----ここから S op(S a,S b){return max(a,b);}//何を求めるか(最大値とか) S e(){return 0;}//モノイド(初期値) S mapping (F a,S b){return a + b;}//遅延処理 F composition (F a,F b){return a + b;}//遅延中の枝にさらに処理 F id(){return 0;}//遅延のモノイド vector Op(vector a,vector b){a.insert(a.end(),b.begin(),b.end()); return a;} vector E(){return vector (0);} ll INF = ll(2e9); int main() { cincout(); ll a,b; cin >> a >> b; cout << b / a << endl; return 0; }