#include #include using namespace std; using namespace atcoder; #define rep(i,n) for(int i = 0; i < n; i++) #define all(a) a.begin(),a.end() #define SORT(a) sort(all(a)); #define MIN(a) *min_element(all(a)) #define MAX(a) *max_element(all(a)) #define SUM(a) accumulate(all(a),0LL) using ll=long long; using ld=long double; using ull=unsigned long; ll MOD=998244353; using mint = static_modint<998244353>; const int dx[]={0,1,0,-1,1,-1,1,-1};const int dy[]={1,0,-1,0,1,1,-1,-1}; const string ALPHA="ABCDEFGHIJKLMNOPQRSTUVWXYZ";const string alpha="abcdefghijklmnopqrstuvwxyz"; long long gcd(long long a, long long b) { while (b != 0) { long long temp = b; b = a % b; a = temp; } return a; } // ポラード・ロー法による素因数分解を行う関数 long long pollard_rho(long long n) { if (n == 1) return 1; if (n % 2 == 0) return 2; long long x = rand() % (n - 2) + 2; long long y = x; long long c = rand() % (n - 1) + 1; long long d = 1; auto f = [&](long long x) { return (x * x + c) % n; }; while (d == 1) { x = f(x); y = f(f(y)); d = gcd(abs(x - y), n); if (d == n) return pollard_rho(n); // 再帰的に呼び出すことで再試行 } return d; } bool is_prime(long long n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (long long i = 5; i * i <= n; i += 6) { if (n % i == 0 || n % (i + 2) == 0) return false; } return true; } // 素因数分解を行う関数 vector> prime_factors(long long n) { vector> factors; while (n > 1) { if (is_prime(n)) { factors.push_back({n, 1}); break; } long long factor = pollard_rho(n); int count = 0; while (n % factor == 0) { n /= factor; count++; } if (count > 0) { factors.push_back({factor, count}); } } return factors; } int main(){ cin.tie(nullptr); cout.tie(nullptr); ios::sync_with_stdio(false); ll n;cin>>n; srand(time(0)); int ans=1; vector> factors = prime_factors(n); for (int i = 0; i < factors.size(); ++i) { ans*=factors[i].second; } cout<