#include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using ll = long long; class range {private: struct I{int x;int operator*(){return x;}bool operator!=(I& lhs){return x ostream& operator<<(ostream& os, const pair& p){ return os << "{" << p.first << ", " << p.second << "}"; } template ostream& operator<<(ostream& os, const vector& obj) { os << "{"; for (const auto& e : obj) os << e << ", "; return os << "}"; } template ostream& operator<<(ostream& os, const set& obj) { os << "set{"; for (const auto& e : obj) os << e << ", "; return os << "}"; } template ostream& operator<<(ostream& os, const map& obj) { os << "map{"; for (const auto& e : obj) os << e << ", "; return os << "}"; } template void take(vector& vec, int n) { vec.resize(n); for (int i = 0; i < n; ++i) cin >> vec[i]; } #ifdef ONLINE_JUDGE #define dump(expr) ; #else #define dump(expr) { cerr << "\033[33m#L" << __LINE__ << ": " << expr << "\033[39m" << endl; } #endif namespace solver { template struct In2 { T1 a; T2 b; friend std::istream& operator>>(std::istream& is, In2& obj) { T1 t1; T2 t2; is >> t1 >> t2; obj = {t1, t2}; return is; } }; template struct In3 { T1 a; T2 b; T3 c; friend std::istream& operator>>(std::istream& is, In3& obj) { T1 t1; T2 t2; T3 t3; is >> t1 >> t2 >> t3; obj = {t1, t2, t3}; return is; } }; using EdgeCost = ll; struct E { int fr, to, eid; EdgeCost cost; E(int fr_, int to_, int eid_, EdgeCost cost_) : fr(fr_), to(to_), eid(eid_), cost(cost_) {} friend ostream &operator<<(ostream &os, const E &e) { os << "(" << e.fr << " -> " << e.to << ")"; return os; } }; using V = vector; struct G { int n, e_count; vector adj, rev; G(int n_) : n(n_), e_count(0), adj(n), rev(n) {} void add_directed_edge(int fr, int to, EdgeCost cost = (EdgeCost)1) { assert(0 <= fr && fr < n); assert(0 <= to && to < n); E e(fr, to, e_count++, cost); adj[fr].push_back(e); rev[to].push_back(e); } void add_undirected_edge(int fr, int to, EdgeCost cost = (EdgeCost)1) { assert(0 <= fr && fr < n); assert(0 <= to && to < n); E e1(fr, to, e_count, cost), e2(to, fr, e_count++, cost); adj[fr].push_back(e1); rev[to].push_back(e1); adj[to].push_back(e2); rev[to].push_back(e2); } }; template void vec_unique(vector& v) { ranges::sort(v); auto result = ranges::unique(v); v.erase(result.begin(), result.end()); } int mex(vector v) { vec_unique(v); dump(v); int res = 0; for (int x : v) { if (x != res) return res; res++; } return res; } void experiment() { int n, k; cin >> n >> k; vector> g(n, vector(n)); for (int y : range(n)) { for (int x : range(n - y)) { vector ns; for (int i : range(1, k + 1)) { { int nx = x - i, ny = y; if (nx >= 0 && ny >= 0) { ns.push_back(g[ny][nx]); } } { int nx = x + i, ny = y - i; if (nx >= 0 && ny >= 0) { ns.push_back(g[ny][nx]); } } } g[y][x] = mex(ns); } } for (int y : range(n)) dump(g[y]); } int n, k; vector> edges; vector vals; void read() { cin >> n >> k; take(edges, n - 1); take(vals, n); } using RetType = string; int dfs(G& g, int now, int par, int depth) { int sum = (depth & 1) ? (vals[now - 1] % (k + 1)) : 0; for (auto e : g.adj[now]) if (e.to != par) { sum ^= dfs(g, e.to, now, depth + 1); } return sum; } RetType run() { G g(n + 1); for (auto p : edges) { g.add_undirected_edge(p.a, p.b); } int sum = dfs(g, 1, -1, 0); return sum ? "K" : "P"; } } // namespace template void run(F f) { if constexpr (std::is_same_v) f(); else cout << f() << endl; } int main(int argc, char** argv) { // solver::experiment(); // return 0; cerr << fixed << setprecision(12); cout << fixed << setprecision(12); int testcase; cin >> testcase; while (testcase--) { solver::read(); run(solver::run); } }