from collections import * import sys import heapq from heapq import heapify, heappop, heappush import bisect import itertools from functools import lru_cache from types import GeneratorType from fractions import Fraction import math import copy import random # import numpy as np # sys.setrecursionlimit(int(1e7)) # @lru_cache(maxsize=None) # CPython特化 # @bootstrap # PyPy特化(こっちのほうが速い) yield dfs(), yield Noneを忘れずに def bootstrap(f, stack=[]): # yield def wrappedfunc(*args, **kwargs): if stack: return f(*args, **kwargs) else: to = f(*args, **kwargs) while True: if type(to) is GeneratorType: stack.append(to) to = next(to) else: stack.pop() if not stack: break to = stack[-1].send(to) return to return wrappedfunc dxdy1 = ((0, 1), (0, -1), (1, 0), (-1, 0)) # 上下右左 dxdy2 = ( (0, 1), (0, -1), (1, 0), (-1, 0), (1, 1), (-1, -1), (1, -1), (-1, 1), ) # 8方向すべて dxdy3 = ((0, 1), (1, 0)) # 右 or 下 dxdy4 = ((1, 1), (1, -1), (-1, 1), (-1, -1)) # 斜め INF = float("inf") _INF = 1 << 60 MOD = 998244353 mod = 998244353 MOD2 = 10**9 + 7 mod2 = 10**9 + 7 # memo : len([a,b,...,z])==26 # memo : 2^20 >= 10^6 # 小数の計算を避ける : x/y -> (x*big)//y ex:big=10**9 # @:小さい文字, ~:大きい文字,None: 空の文字列 # ユークリッドの互除法:gcd(x,y)=gcd(x,y-x) # memo : d 桁以下の p 進表記を用いると p^d-1 以下のすべての # 非負整数を表現することができる # memo : (X,Y) -> (X+Y,X−Y) <=> 点を原点を中心に45度回転し、√2倍に拡大 # memo : (x,y)のx正から見た偏角をラジアンで(-πからπ]: math.atan2(y, x) # memo : a < bのとき ⌊a⌋ ≦ ⌊b⌋ input = lambda: sys.stdin.readline().rstrip() mi = lambda: map(int, input().split()) li = lambda: list(mi()) ii = lambda: int(input()) py = lambda: print("Yes") pn = lambda: print("No") pf = lambda: print("First") ps = lambda: print("Second") # https://github.com/tatyam-prime/SortedSet/blob/main/SortedMultiset.py import math from bisect import bisect_left, bisect_right, insort from typing import Generic, Iterable, Iterator, TypeVar, Union, List T = TypeVar("T") class SortedMultiset(Generic[T]): BUCKET_RATIO = 50 REBUILD_RATIO = 170 def _build(self, a=None) -> None: "Evenly divide `a` into buckets." if a is None: a = list(self) size = self.size = len(a) bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO))) self.a = [ a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size) ] def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)" a = list(a) if not all(a[i] <= a[i + 1] for i in range(len(a) - 1)): a = sorted(a) self._build(a) def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedMultiset" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1 : len(s) - 1] + "}" def _find_bucket(self, x: T) -> List[T]: "Find the bucket which should contain x. self must not be empty." for a in self.a: if x <= a[-1]: return a return a def __contains__(self, x: T) -> bool: if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) return i != len(a) and a[i] == x def count(self, x: T) -> int: "Count the number of x." return self.index_right(x) - self.index(x) def add(self, x: T) -> None: "Add an element. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return a = self._find_bucket(x) insort(a, x) self.size += 1 if len(a) > len(self.a) * self.REBUILD_RATIO: self._build() def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) if i == len(a) or a[i] != x: return False a.pop(i) self.size -= 1 if len(a) == 0: self._build() return True def lt(self, x: T) -> Union[T, None]: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Union[T, None]: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Union[T, None]: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Union[T, None]: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, x: int) -> T: "Return the x-th element, or IndexError if it doesn't exist." if x < 0: x += self.size if x < 0: raise IndexError for a in self.a: if x < len(a): return a[x] x -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans ms = SortedMultiset() ms_g = SortedMultiset() rate = defaultdict(int) N, Q = mi() pc = N for _ in range(Q): cmd, *line = map(str, input().split()) if cmd == "1": s, r = line rate[s] = int(r) ms.add((int(r), s)) elif cmd == "2": x = line[0] pc -= int(x) else: s, x = line pc += int(x) ms.discard((rate[s], s)) if (rate[s], s) not in ms_g: ms_g.add((rate[s], s)) tarinai = len(ms) + len(ms_g) - pc kitaku = [] if tarinai > 0: while ms and tarinai > 0: r, s = ms[0] kitaku.append((r, s)) ms.discard((r, s)) tarinai -= 1 while ms_g and tarinai > 0: r, s = ms_g[0] kitaku.append((r, s)) ms_g.discard((r, s)) kitaku.sort() for _, name in kitaku: print(name) # print(ms_g) # print(ms) # print("--")