import typing from math import lcm def _is_prime(n: int) -> bool: ''' Reference: M. Forisek and J. Jancina, Fast Primality Testing for Integers That Fit into a Machine Word ''' if n <= 1: return False if n == 2 or n == 7 or n == 61: return True if n % 2 == 0: return False d = n - 1 while d % 2 == 0: d //= 2 for a in (2, 7, 61): t = d y = pow(a, t, n) while t != n - 1 and y != 1 and y != n - 1: y = y * y % n t <<= 1 if y != n - 1 and t % 2 == 0: return False return True def _inv_gcd(a: int, b: int) -> typing.Tuple[int, int]: a %= b if a == 0: return (b, 0) # Contracts: # [1] s - m0 * a = 0 (mod b) # [2] t - m1 * a = 0 (mod b) # [3] s * |m1| + t * |m0| <= b s = b t = a m0 = 0 m1 = 1 while t: u = s // t s -= t * u m0 -= m1 * u # |m1 * u| <= |m1| * s <= b # [3]: # (s - t * u) * |m1| + t * |m0 - m1 * u| # <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) # = s * |m1| + t * |m0| <= b s, t = t, s m0, m1 = m1, m0 # by [3]: |m0| <= b/g # by g != b: |m0| < b/g if m0 < 0: m0 += b // s return (s, m0) def _primitive_root(m: int) -> int: if m == 2: return 1 if m == 167772161: return 3 if m == 469762049: return 3 if m == 754974721: return 11 if m == 998244353: return 3 divs = [2] + [0] * 19 cnt = 1 x = (m - 1) // 2 while x % 2 == 0: x //= 2 i = 3 while i * i <= x: if x % i == 0: divs[cnt] = i cnt += 1 while x % i == 0: x //= i i += 2 if x > 1: divs[cnt] = x cnt += 1 g = 2 while True: for i in range(cnt): if pow(g, (m - 1) // divs[i], m) == 1: break else: return g g += 1 def crt(r: typing.List[int], m: typing.List[int]) -> typing.Tuple[int, int]: assert len(r) == len(m) # Contracts: 0 <= r0 < m0 r0 = 0 m0 = 1 for r1, m1 in zip(r, m): assert 1 <= m1 r1 %= m1 if m0 < m1: r0, r1 = r1, r0 m0, m1 = m1, m0 if m0 % m1 == 0: if r0 % m1 != r1: return (0, 0) continue # assume: m0 > m1, lcm(m0, m1) >= 2 * max(m0, m1) ''' (r0, m0), (r1, m1) -> (r2, m2 = lcm(m0, m1)); r2 % m0 = r0 r2 % m1 = r1 -> (r0 + x*m0) % m1 = r1 -> x*u0*g % (u1*g) = (r1 - r0) (u0*g = m0, u1*g = m1) -> x = (r1 - r0) / g * inv(u0) (mod u1) ''' # im = inv(u0) (mod u1) (0 <= im < u1) g, im = _inv_gcd(m0, m1) u1 = m1 // g # |r1 - r0| < (m0 + m1) <= lcm(m0, m1) if (r1 - r0) % g: return (0, 0) # u1 * u1 <= m1 * m1 / g / g <= m0 * m1 / g = lcm(m0, m1) x = (r1 - r0) // g % u1 * im % u1 ''' |r0| + |m0 * x| < m0 + m0 * (u1 - 1) = m0 + m0 * m1 / g - m0 = lcm(m0, m1) ''' r0 += x * m0 m0 *= u1 # -> lcm(m0, m1) if r0 < 0: r0 += m0 return (r0, m0) XY = [list(map(int,input().split())) for _ in range(3)] X,Y = map(list,zip(*XY)) r,m = crt(X,Y) if m == 0: print(-1) elif r == 0: print(lcm(*Y)) else: print(r)