#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using lint = long long; using pint = pair; using plint = pair; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; } template bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; } const std::vector> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}}; int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); } template std::pair operator+(const std::pair &l, const std::pair &r) { return std::make_pair(l.first + r.first, l.second + r.second); } template std::pair operator-(const std::pair &l, const std::pair &r) { return std::make_pair(l.first - r.first, l.second - r.second); } template std::vector sort_unique(std::vector vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template int arglb(const std::vector &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); } template int argub(const std::vector &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); } template IStream &operator>>(IStream &is, std::vector &vec) { for (auto &v : vec) is >> v; return is; } template OStream &operator<<(OStream &os, const std::vector &vec); template OStream &operator<<(OStream &os, const std::array &arr); template OStream &operator<<(OStream &os, const std::unordered_set &vec); template OStream &operator<<(OStream &os, const pair &pa); template OStream &operator<<(OStream &os, const std::deque &vec); template OStream &operator<<(OStream &os, const std::set &vec); template OStream &operator<<(OStream &os, const std::multiset &vec); template OStream &operator<<(OStream &os, const std::unordered_multiset &vec); template OStream &operator<<(OStream &os, const std::pair &pa); template OStream &operator<<(OStream &os, const std::map &mp); template OStream &operator<<(OStream &os, const std::unordered_map &mp); template OStream &operator<<(OStream &os, const std::tuple &tpl); template OStream &operator<<(OStream &os, const std::vector &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template OStream &operator<<(OStream &os, const std::array &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } template std::istream &operator>>(std::istream &is, std::tuple &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template OStream &operator<<(OStream &os, const std::tuple &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; } template OStream &operator<<(OStream &os, const std::unordered_set &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::deque &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template OStream &operator<<(OStream &os, const std::set &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::multiset &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::unordered_multiset &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::pair &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; } template OStream &operator<<(OStream &os, const std::map &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::unordered_map &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl #define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr) #else #define dbg(x) ((void)0) #define dbgif(cond, x) ((void)0) #endif #include #include #include #include #include // Gauss-Jordan elimination of n * m matrix M // Complexity: O(nm + nm rank(M) / 64) // Verified: abc276_h (2000 x 8000) template std::vector> f2_gauss_jordan(int W, std::vector> M) { assert(W <= Wmax); int H = M.size(), c = 0; for (int h = 0; h < H and c < W; ++h, ++c) { int piv = -1; for (int j = h; j < H; ++j) { if (M[j][c]) { piv = j; break; } } if (piv == -1) { --h; continue; } std::swap(M[piv], M[h]); for (int hh = 0; hh < H; ++hh) { if (hh != h and M[hh][c]) M[hh] ^= M[h]; } } return M; } // Rank of Gauss-Jordan eliminated matrix template int f2_rank_gauss_jordan(int W, const std::vector> &M) { assert(W <= Wmax); for (int h = (int)M.size() - 1; h >= 0; h--) { int j = 0; while (j < W and !M[h][j]) ++j; if (j < W) return h + 1; } return 0; } // determinant of F2 matrix. // Return 0 if the matrix is singular, otherwise return 1. // Complexity: O(W^3 / 64) template int f2_determinant(const std::vector> &M) { const int H = M.size(); if (H > Wmax) return 0; auto tmp = M; for (int h = 0; h < H; ++h) { int piv = -1; for (int j = h; j < H; ++j) { if (tmp.at(j).test(h)) { piv = j; break; } } if (piv == -1) return 0; // singular if (piv != h) std::swap(tmp.at(piv), tmp.at(h)); for (int hh = h + 1; hh < H; ++hh) { if (tmp.at(hh).test(h)) tmp.at(hh) ^= tmp.at(h); } } return 1; // nonsingular } template std::vector> f2_matmul(const std::vector> &A, const std::vector> &B) { int H = A.size(), K = B.size(); std::vector> C(H); for (int i = 0; i < H; i++) { for (int j = 0; j < K; j++) { if (A.at(i).test(j)) C.at(i) ^= B.at(j); } } return C; } template std::vector> f2_matpower(std::vector> X, long long n) { int D = X.size(); std::vector> ret(D); for (int i = 0; i < D; i++) ret[i][i] = 1; while (n) { if (n & 1) ret = f2_matmul(ret, X); X = f2_matmul(X, X), n >>= 1; } return ret; } // Solve Ax = b on F_2 // - retval: {true, one of the solutions, {freedoms}} (if solution exists) // {false, {}, {}} (otherwise) // Complexity: O(HW + HW rank(A) / 64 + W^2 len(freedoms)) template std::tuple, std::vector>> f2_system_of_linear_equations(std::vector> A, Vec b, int W) { int H = A.size(); assert(W <= Wmax); assert(A.size() == b.size()); std::vector> M(H); for (int i = 0; i < H; ++i) { for (int j = 0; j < W; ++j) M[i][j] = A[i][j]; M[i][W] = b[i]; } M = f2_gauss_jordan(W + 1, M); std::vector ss(W, -1); std::vector ss_nonneg_js; for (int i = 0; i < H; i++) { int j = 0; while (j <= W and !M[i][j]) ++j; if (j == W) return {false, 0, {}}; if (j < W) { ss_nonneg_js.push_back(j); ss[j] = i; } } std::bitset x; std::vector> D; for (int j = 0; j < W; ++j) { if (ss[j] == -1) { // This part may require W^2 space complexity in output std::bitset d; d[j] = 1; for (int jj : ss_nonneg_js) d[jj] = M[ss[jj]][j]; D.emplace_back(d); } else { x[j] = M[ss[j]][W]; } } return std::make_tuple(true, x, D); } void No() { puts("-1"); exit(0); } void solve_small(const vector> &state) { const int N = state.size(); constexpr int Wmax = 800; assert(lint(N) * N <= Wmax); vector> A(N * N); vector b(N * N); auto f = [&](int r, int c) { return r * N + c; }; REP(i, N) REP(j, N) { auto op = [&](int r, int c) { A[f(r, c)].flip(f(i, j)); A[f((r + N - 1) % N, c)].flip(f(i, j)); A[f(r, (c + N - 1) % N)].flip(f(i, j)); A[f((r + N - 1) % N, (c + N - 1) % N)].flip(f(i, j)); }; op(i, j); op(0, j); op(i, 0); b[f(i, j)] = state.at(i).at(j); } auto [ok, x, _] = f2_system_of_linear_equations(A, b, N * N); if (ok) { cout << x.count() << '\n'; REP(i, N) REP(j, N) { if (x[f(i, j)]) cout << i << ' ' << j << '\n'; } exit(0); } else { No(); } } int main() { int N; cin >> N; vector S(N); cin >> S; dbg(S); // assert(N > 50); vector state(N, vector(N)); REP(i, N) REP(j, N) state.at(i).at(j) = S.at(i).at(j) == '#'; if (N * N < 800) solve_small(state); vector ret(N, vector(N)); auto sousa = [&](int r, int c) { int r1 = (r + N - 1) % N, c1 = (c + N - 1) % N; state.at(r).at(c) ^= 1; state.at(r1).at(c) ^= 1; state.at(r).at(c1) ^= 1; state.at(r1).at(c1) ^= 1; }; auto act = [&](int r, int c) { ret.at(r).at(c) ^= 1; sousa(r, c); sousa(r, 0); sousa(0, c); }; IFOR(c, 1, N - 1) { IFOR(r, 1, N - 1) { if (state.at(r).at(c)) act(r, c); } // if (state.front().at(c) != state.back().at(c)) act(1, c); } if (state.front().front()) act(0, 0); FOR(r, 1, N - 1) { FOR(c, 1, N - 1) assert(state.at(r).at(c) == 0); } IFOR(r, 3, N - 1) { if (state.at(r).front()) { act(r, 2); act(r - 1, 2); } } IFOR(c, 3, N - 1) { if (state.front().at(c)) { act(2, c); act(2, c - 1); } } if (state.at(3).at(0)) act(3, 3); // IFOR(r, 1, N - 1) { // if (state.at(r).front() != state.at(r).back()) act(r, 1); // } // REP(r, N) { // if (state.at(r).front() != state.at(r).back()) No(); // } // REP(c, N) { // if (state.front().at(c) != state.back().at(c)) No(); // } REP(i, N) REP(j, N) { if (state.at(i).at(j)) No(); } // if (state.back().back()) No(); for (auto s : state) dbg(s); int ans = 0; for (auto v : ret) ans += accumulate(ALL(v), 0); cout << ans << '\n'; REP(i, N) REP(j, N) { if (ret.at(i).at(j)) cout << i << ' ' << j << '\n'; } }