結果

問題 No.1078 I love Matrix Construction
ユーザー masayoshi361masayoshi361
提出日時 2020-06-13 11:58:55
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 444 ms / 2,000 ms
コード長 7,462 bytes
コンパイル時間 2,356 ms
コンパイル使用メモリ 188,852 KB
実行使用メモリ 89,640 KB
最終ジャッジ日時 2023-09-07 05:38:43
合計ジャッジ時間 9,326 ms
ジャッジサーバーID
(参考情報)
judge14 / judge11
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
4,376 KB
testcase_01 AC 2 ms
4,380 KB
testcase_02 AC 41 ms
16,000 KB
testcase_03 AC 136 ms
35,768 KB
testcase_04 AC 193 ms
48,928 KB
testcase_05 AC 169 ms
41,168 KB
testcase_06 AC 39 ms
15,328 KB
testcase_07 AC 12 ms
7,876 KB
testcase_08 AC 155 ms
41,152 KB
testcase_09 AC 6 ms
4,952 KB
testcase_10 AC 444 ms
89,640 KB
testcase_11 AC 209 ms
51,400 KB
testcase_12 AC 353 ms
74,668 KB
testcase_13 AC 395 ms
83,268 KB
testcase_14 AC 254 ms
58,596 KB
testcase_15 AC 381 ms
79,700 KB
testcase_16 AC 10 ms
6,780 KB
testcase_17 AC 1 ms
4,376 KB
testcase_18 AC 27 ms
12,384 KB
testcase_19 AC 73 ms
24,360 KB
testcase_20 AC 72 ms
23,736 KB
testcase_21 AC 4 ms
4,380 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

//header
#ifdef LOCAL
    #include "cxx-prettyprint-master/prettyprint.hpp"
    #define debug(x) cout << x << endl
#else
    #define debug(...) 42
#endif
    #pragma GCC optimize("Ofast")
    #include <bits/stdc++.h>
    //types
    using namespace std;
    using ll = long long;
    using ul = unsigned long long;
    using ld = long double;
    typedef pair < ll , ll > Pl;        
    typedef pair < int, int > Pi;
    typedef vector<ll> vl;
    typedef vector<int> vi;
    template< typename T >
    using mat = vector< vector< T > >;
    template< int mod >
    struct modint {
        int x;

        modint() : x(0) {}

        modint(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

        modint &operator+=(const modint &p) {
            if((x += p.x) >= mod) x -= mod;
            return *this;
        }

        modint &operator-=(const modint &p) {
            if((x += mod - p.x) >= mod) x -= mod;
            return *this;
        }

        modint &operator*=(const modint &p) {
            x = (int) (1LL * x * p.x % mod);
            return *this;
        }

        modint &operator/=(const modint &p) {
            *this *= p.inverse();
            return *this;
        }

        modint operator-() const { return modint(-x); }

        modint operator+(const modint &p) const { return modint(*this) += p; }

        modint operator-(const modint &p) const { return modint(*this) -= p; }

        modint operator*(const modint &p) const { return modint(*this) *= p; }

        modint operator/(const modint &p) const { return modint(*this) /= p; }

        bool operator==(const modint &p) const { return x == p.x; }

        bool operator!=(const modint &p) const { return x != p.x; }

        modint inverse() const {
            int a = x, b = mod, u = 1, v = 0, t;
            while(b > 0) {
            t = a / b;
            swap(a -= t * b, b);
            swap(u -= t * v, v);
            }
            return modint(u);
        }

        modint pow(int64_t n) const {
            modint ret(1), mul(x);
            while(n > 0) {
            if(n & 1) ret *= mul;
            mul *= mul;
            n >>= 1;
            }
            return ret;
        }

        friend ostream &operator<<(ostream &os, const modint &p) {
            return os << p.x;
        }

        friend istream &operator>>(istream &is, modint &a) {
            int64_t t;
            is >> t;
            a = modint< mod >(t);
            return (is);
        }

        static int get_mod() { return mod; }
    };
    //abreviations
    #define all(x) (x).begin(), (x).end()
    #define rall(x) (x).rbegin(), (x).rend()
    #define rep_(i, a_, b_, a, b, ...) for (int i = (a), max_i = (b); i < max_i; i++)
    #define rep(i, ...) rep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
    #define rrep_(i, a_, b_, a, b, ...) for (int i = (b-1), min_i = (a); i >= min_i; i--)
    #define rrep(i, ...) rrep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
    #define SZ(x) ((int)(x).size())
    #define pb(x) push_back(x)
    #define eb(x) emplace_back(x)
    #define mp make_pair
    #define print(x) cout << x << endl
    #define vsum(x) accumulate(x, 0LL)
    #define vmax(a) *max_element(all(a))
    #define vmin(a) *min_element(all(a))
    //functions
    ll gcd(ll a, ll b) { return b ? gcd(b, a%b) : a; }
    ll lcm(ll a, ll b) { return a/gcd(a, b)*b;}
    template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }
    template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }
    template< typename T >
    T mypow(T x, ll n) {
        T ret = 1;
        while(n > 0) {
            if(n & 1) (ret *= x);
            (x *= x);
            n >>= 1;
        }
        return ret;
    }
    ll modpow(ll x, ll n, const ll mod) {
        ll ret = 1;
        while(n > 0) {
            if(n & 1) (ret *= x);
            (x *= x);
            n >>= 1;
            x%=mod;
            ret%=mod;
        }
        return ret;
    }
    uint64_t my_rand(void) {
        static uint64_t x = 88172645463325252ULL;
        x = x ^ (x << 13); x = x ^ (x >> 7);
        return x = x ^ (x << 17);
    }
    //graph template
    template< typename T >
    struct edge {
        int src, to;
        T cost;

        edge(int to, T cost) : src(-1), to(to), cost(cost) {}

        edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}

        edge &operator=(const int &x) {
            to = x;
            return *this;
        }
        operator int() const { return to; }
    };
    template< typename T >
    using Edges = vector< edge< T > >;
    template< typename T >
    using WeightedGraph = vector< Edges< T > >;
    using UnWeightedGraph = vector< vector< int > >;

//constant
#define inf 1000000005
#define mod 1000000007LL
#define endl '\n'
typedef modint<mod> mint;
const long double eps = 0.0001;
const long double PI  = 3.141592653589793;
//library
//dfsを二回するだけなのでO(V+E)
template< typename G >
struct StronglyConnectedComponents {
  const G &g;
  UnWeightedGraph gg, rg;//通常のグラフと逆辺グラフ
  vector< int > comp, order, used;//強連結成分のid, dfsで進めなくなった順番

  StronglyConnectedComponents(G &g) : g(g), gg(g.size()), rg(g.size()), comp(g.size(), -1), used(g.size()) {
    for(int i = 0; i < g.size(); i++) {
      for(auto e : g[i]) {
        gg[i].emplace_back((int) e);
        rg[(int) e].emplace_back(i);
      }
    }
  }
  // return id of its component
  int operator[](int k) {
    return comp[k];
  }

  //dfs
  void dfs(int idx) {
    if(used[idx]) return;
    used[idx] = true;
    for(int to : gg[idx]) dfs(to);
    order.push_back(idx);
  }

  //転置グラフでdfs
  void rdfs(int idx, int cnt) {
    if(comp[idx] != -1) return;
    comp[idx] = cnt;
    for(int to : rg[idx]) rdfs(to, cnt);
  }

  //縮約後のグラフを入れるグラフtを渡す
  //トポロジカルソート済
  void build(UnWeightedGraph &t) {
    for(int i = 0; i < gg.size(); i++) dfs(i);
    reverse(begin(order), end(order));
    int ptr = 0;
    for(int i : order) if(comp[i] == -1) rdfs(i, ptr), ptr++;

    t.resize(ptr);
    for(int i = 0; i < g.size(); i++) {
      for(auto &to : g[i]) {
        int x = comp[i], y = comp[to];
        if(x == y) continue;
        t[x].push_back(y);
      }
    }
  }
};

int main(){
    cin.tie(0);
    ios::sync_with_stdio(0);
    cout << setprecision(20);
    int n; cin>>n;
    vi s(n), t(n), u(n);
    rep(i, n)cin>>s[i], s[i]--;
    rep(i, n)cin>>t[i], t[i]--;
    rep(i, n)cin>>u[i], u[i];
    mat<int> ans(n, vi(n));
    mat<int> g(n*n*2);
    rep(i, n)rep(j, n){
      int s0 = s[i]*n+j, t0 = j*n+t[i];
      int s1 = s0+n*n, t1 = t0+n*n;
      if(u[i]==0){
        g[s0].pb(t1);
        g[t0].pb(s1);
      }else if(u[i]==1){
        g[s1].pb(t1);
        g[t0].pb(s0);
      }else if(u[i]==2){
        g[s0].pb(t0);
        g[t1].pb(s1);
      }else{
        g[s1].pb(t0);
        g[t1].pb(s0);
      }
    }
    StronglyConnectedComponents<mat<int>> scc(g);
    UnWeightedGraph topo;
    scc.build(topo);
    rep(i, n){
      rep(j, n){
        int v = i*n+j;
        if(scc[v]==scc[v+n*n]){
          cout << -1 << endl;
          return 0;
        }
        if(scc[v]<scc[v+n*n]){
          ans[i][j] = 1;
        }else{
          ans[i][j] = 0;
        }
      }
    }
    rep(i, n){
      rep(j, n)cout << ans[i][j] << ' ';
      cout << endl;
    }
}
0