結果

問題 No.890 移調の限られた旋法
ユーザー te-shte-sh
提出日時 2021-08-11 21:03:09
言語 Crystal
(1.11.2)
結果
AC  
実行時間 26 ms / 2,000 ms
コード長 10,009 bytes
コンパイル時間 16,959 ms
コンパイル使用メモリ 295,700 KB
実行使用メモリ 18,740 KB
最終ジャッジ日時 2023-10-25 23:03:02
合計ジャッジ時間 19,517 ms
ジャッジサーバーID
(参考情報)
judge15 / judge12
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
4,324 KB
testcase_01 AC 2 ms
4,352 KB
testcase_02 AC 1 ms
4,352 KB
testcase_03 AC 1 ms
4,352 KB
testcase_04 AC 2 ms
4,352 KB
testcase_05 AC 1 ms
4,352 KB
testcase_06 AC 1 ms
4,352 KB
testcase_07 AC 1 ms
4,352 KB
testcase_08 AC 2 ms
4,352 KB
testcase_09 AC 2 ms
4,352 KB
testcase_10 AC 2 ms
4,352 KB
testcase_11 AC 1 ms
4,352 KB
testcase_12 AC 2 ms
4,352 KB
testcase_13 AC 26 ms
18,736 KB
testcase_14 AC 25 ms
18,640 KB
testcase_15 AC 25 ms
18,692 KB
testcase_16 AC 25 ms
18,740 KB
testcase_17 AC 23 ms
18,084 KB
testcase_18 AC 24 ms
18,088 KB
testcase_19 AC 14 ms
11,532 KB
testcase_20 AC 10 ms
8,592 KB
testcase_21 AC 3 ms
4,352 KB
testcase_22 AC 19 ms
15,740 KB
testcase_23 AC 23 ms
17,688 KB
testcase_24 AC 14 ms
11,820 KB
testcase_25 AC 5 ms
4,952 KB
testcase_26 AC 24 ms
18,000 KB
testcase_27 AC 24 ms
18,252 KB
testcase_28 AC 17 ms
14,136 KB
testcase_29 AC 11 ms
9,432 KB
testcase_30 AC 25 ms
18,120 KB
testcase_31 AC 14 ms
11,232 KB
testcase_32 AC 23 ms
17,080 KB
testcase_33 AC 23 ms
17,812 KB
testcase_34 AC 23 ms
17,808 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

def solve(io)
  n, k = io.get2
  g = n.gcd(k)
  pf = PrimeFactor.sqrt(g)
  ft = Fact(Mint).new(n)

  a = Hash(Int32, Mint).new(Mint.zero)
  pf.divisors(g).reverse_each do |di|
    next if di == 1
    i = n // di
    a[i] = ft.combi(i, k // di)
    pf.divisors(i).each do |ei|
      next if ei == i
      a[i] -= a[ei]
    end
  end

  io.put a.values.sum
end

class ProconIO
  def initialize(@ins : IO = STDIN, @outs : IO = STDOUT)
    @buf = IO::Memory.new("")
  end

  def get(k : T.class = Int32) forall T
    get_v(k)
  end

  macro define_get
    {% for i in (2..9) %}
      def get({{ *(1..i).map { |j| "k#{j}".id } }})
        { {{ *(1..i).map { |j| "get(k#{j})".id } }} }
      end
    {% end %}
  end
  define_get

  macro define_getn
    {% for i in (2..9) %}
      def get{{i}}(k : T.class = Int32) forall T
        get({{ *(1..i).map { "k".id } }})
      end
    {% end %}
  end
  define_getn

  def get_a(n : Int, k : T.class = Int32) forall T
    Array.new(n) { get_v(k) }
  end

  def get_c(n : Int, k : T.class = Int32) forall T
    get_a(n, k)
  end

  macro define_get_c
    {% for i in (2..9) %}
      def get_c(n : Int, {{ *(1..i).map { |j| "k#{j}".id } }})
        a = Array.new(n) { get({{ *(1..i).map { |j| "k#{j}".id } }}) }
        { {{ *(1..i).map { |j| "a.map { |e| e[#{j-1}] }".id } }} }
      end
    {% end %}
  end
  define_get_c

  macro define_getn_c
    {% for i in (2..9) %}
      def get{{i}}_c(n : Int, k : T.class = Int32) forall T
        get_c(n, {{ *(1..i).map { "k".id } }})
      end
    {% end %}
  end
  define_getn_c

  def get_m(r : Int, c : Int, k : T.class = Int32) forall T
    Array.new(r) { get_a(c, k) }
  end

  macro define_put
    {% for i in (1..9) %}
      def put({{ *(1..i).map { |j| "v#{j}".id } }}, *, delimiter = " ")
        {% for j in (1..i) %}
          print_v(v{{j}}, delimiter)
          {% if j < i %}@outs << delimiter{% end %}
        {% end %}
        @outs.puts
      end
    {% end %}
  end
  define_put

  def put_e(*vs)
    put(*vs)
    exit
  end

  def put_f(*vs)
    put(*vs)
    @outs.flush
  end


  private def get_v(k : Int32.class); get_token.to_i32; end
  private def get_v(k : Int64.class); get_token.to_i64; end
  private def get_v(k : UInt32.class); get_token.to_u32; end
  private def get_v(k : UInt64.class); get_token.to_u64; end
  private def get_v(k : Float64.class); get_token.to_f64; end
  private def get_v(k : String.class); get_token; end

  private def get_token
    loop do
      token = @buf.gets(' ', chomp: true)
      break token unless token.nil?
      @buf = IO::Memory.new(@ins.read_line)
    end
  end

  private def print_v(v, dlimiter)
    @outs << v
  end

  private def print_v(v : Enumerable, delimiter)
    v.each_with_index do |e, i|
      @outs << e
      @outs << delimiter if i < v.size - 1
    end
  end
end

struct Int
  def cdiv(b : Int)
    (self + b - 1) // b
  end

  def bit?(i : Int)
    bit(i) == 1
  end

  def set_bit(i : Int)
    self | (self.class.new(1) << i)
  end

  def reset_bit(i : Int)
    self & ~(self.class.new(1) << i)
  end

  
  {% if compare_versions(env("CRYSTAL_VERSION") || "0.0.0", "0.35.0") < 0 %}
    def digits(base = 10)
      raise ArgumentError.new("Invalid base #{base}") if base < 2
      raise ArgumentError.new("Can't request digits of negative number") if self < 0
      return [0] if self == 0

      num = self
      digits_count = (Math.log(self.to_f + 1) / Math.log(base)).ceil.to_i
      ary = Array(Int32).new(digits_count)
      while num != 0
        ary << num.remainder(base).to_i
        num = num.tdiv(base)
      end
      ary
    end
  {% end %}

  {% if compare_versions(env("CRYSTAL_VERSION") || "0.0.0", "0.34.0") < 0 %}
    def bit_length : Int32
      x = self < 0 ? ~self : self

      if x.is_a?(Int::Primitive)
        Int32.new(sizeof(self) * 8 - x.leading_zeros_count)
      else
        to_s(2).size
      end
    end
  {% end %}
end

struct Float64
  def near?(x)
    (self - x).abs <= (self.abs < x.abs ? x.abs : self.abs) * EPSILON
  end
end

struct Number
  {% if compare_versions(env("CRYSTAL_VERSION") || "0.0.0", "1.1.0") < 0 %}
    def zero?
      self == 0
    end

    def positive?
      self > 0
    end

    def negative?
      self < 0
    end
  {% end %}

  {% if compare_versions(env("CRYSTAL_VERSION") || "0.0.0", "0.36.0") < 0 %}
    def self.additive_identity
      zero
    end

    def self.multiplicative_identity
      new(1)
    end
  {% end %}
end

class Array
  macro new_md(*args, &block)
    {% if !block %}
      {% for arg, i in args[0...-2] %}
        Array.new({{arg}}) {
      {% end %}
      Array.new({{args[-2]}}, {{args[-1]}})
      {% for arg in args[0...-2] %}
        }
      {% end %}
    {% else %}
      {% for arg, i in args %}
        Array.new({{arg}}) { |_i{{i}}|
      {% end %}
      {% for block_arg, i in block.args %}
        {{block_arg}} = _i{{i}}
      {% end %}
      {{block.body}}
      {% for arg in args %}
        }
      {% end %}
    {% end %}
  end
end

module Math
  {% if compare_versions(env("CRYSTAL_VERSION") || "0.0.0", "1.2.0") < 0 %}
    def isqrt(value : Int::Primitive)
      raise ArgumentError.new "Input must be non-negative integer" if value < 0
      return value if value < 2
      res = value.class.zero
      bit = res.succ << (res.leading_zeros_count - 2)
      bit >>= value.leading_zeros_count & ~0x3
      while (bit != 0)
        if value >= res + bit
          value -= res + bit
          res = (res >> 1) + bit
        else
          res >>= 1
        end
        bit >>= 2
      end
      res
    end
  {% end %}
end

macro min_u(a, b)
  {{a}} = Math.min({{a}}, {{b}})
end

macro max_u(a, b)
  {{a}} = Math.max({{a}}, {{b}})
end

macro zip(a, *b, &block)
  {{a}}.zip({{*b}}) {{block}}
end


class PrimeFactor
  def initialize(@n : Int32)
    s = (@n + 1) // 2
    sieve = Array.new(s, true)

    if @n < 2
      @primes = [] of Int32
      return
    end

    m = (Math.isqrt(n) - 1) // 2
    (1..m).each do |p|
      if sieve[p]
        (p*3+1...s).step(p*2+1) do |q|
          sieve[q] = false
        end
      end
    end

    @primes = [2]
    (1...s).each do |p|
      @primes << p*2+1 if sieve[p]
    end
  end

  def self.sqrt(n : Int)
    self.new(Math.isqrt(n).to_i32)
  end

  getter primes : Array(Int32)

  record Factor(T), prime : T, exp : Int32

  def div(x : T) forall T
    factors = [] of Factor(T)
    t = Math.isqrt(x)
    @primes.each do |p|
      break if p > t
      c = 0
      while x%p == 0
        c += 1
        x //= p
      end
      factors << Factor.new(T.new(p), c) if c > 0
      break if x == 1
    end
    factors << Factor.new(x, 1) if x > 1
    factors
  end

  def divisors(x : T) forall T
    factors = div(x)
    r = divisors_proc(factors, 0, T.multiplicative_identity)
    r.sort!
  end


  def divisors_proc(factors : Array(Factor(T)), i : Int32, c : T) forall T
    return [c] if i == factors.size
    r = [] of T
    (0..factors[i].exp).each do |j|
      r.concat(divisors_proc(factors, i+1, c * factors[i].prime**j))
    end
    r
  end
end

class Fact(T)
  def initialize(@n : Int32)
    @table = Array.new(@n+1, T.multiplicative_identity)
    (1..@n).each do |i|
      @table[i] = @table[i-1] * i
    end

    @inv_table = Array.new(@n+1, T.multiplicative_identity)
    @inv_table[@n] //= @table[@n]
    (1..@n).reverse_each do |i|
      @inv_table[i-1] = @inv_table[i] * i
    end
  end

  getter table : Array(T)

  getter inv_table : Array(T)

  def fact(n : Int)
    @table[n]
  end

  def perm(n : Int, r : Int)
    @table[n] * @inv_table[n-r]
  end

  def combi(n : Int, r : Int)
    @table[n] * @inv_table[r] * @inv_table[n-r]
  end

  def homo(n : Int, r : Int)
    combi(n + r - 1, r)
  end


  @table : Array(T)
  @inv_table : Array(T)
end

def powr(a : T, n : Int, i : T = T.multiplicative_identity) forall T
  powr(a, n, i) { |a, b| a * b }
end

def powr(a : T, n : Int, i : T = T.multiplicative_identity, &block) forall T
  return i if n == 0
  r, b = i, a
  while n > 0
    r = yield r, b if n.bit(0) == 1
    b = yield b, b
    n >>= 1
  end
  r
end

def ext_gcd(a : T, b : T) forall T
  if a == 0
    {b, T.new(0), T.new(1)}
  else
    g, x, y = ext_gcd(b % a, a)
    {g, y - (b // a) * x, x}
  end
end

def bit_subsets(a : Int, includes_zero = false)
  n = i = a
  if includes_zero
    while i >= 0
      yield i & n
      i = (i & n) - 1
    end
  else
    while i > 0
      yield i
      i = (i - 1) & n
    end
  end
end

def bit_zeta_trans_subset(n : Int, f : Array(T), &compose : (T, T) -> T) forall T
  g = Array.new(1 << n) { |i| f[i] }
  n.times do |i|
    (1 << n).times do |j|
      if j >> i & 1 != 0
        g[j] = compose.call(g[j], g[j ^ (1 << i)])
      end
    end
  end
  g
end

def bit_zeta_trans_superset(n : Int, f : Array(T), &compose : (T, T) -> T) forall T
  g = Array.new(1 << n) { |i| f[i] }
  n.times do |i|
    (1 << n).times do |j|
      if j >> i & 1 == 0
        g[j] = compose.call(g[j], g[j ^ (1 << i)])
      end
    end
  end
  g
end

abstract struct ModInt < Number
  macro new_type(name, mod)
    struct {{name}} < ModInt
      @@mod : Int32 = {{mod}}
    end
  end

  def initialize(v : Int)
    @v = (v % @@mod).to_i64
  end

  def_hash @@mod, @v

  def to_s
    @v.to_s
  end

  def to_s(io : IO) : Nil
    @v.to_s(io)
  end

  getter v : Int64

  delegate to_i, to: @v

  def ==(r : self)
    @v == r.v
  end

  def ==(r : Int)
    @v == (r % @@mod)
  end

  def - : self
    m(-@v)
  end

  def +(r : self)
    m(@v + r.v)
  end

  def +(r : Int)
    self + m(r)
  end

  def -(r : self)
    m(@v - r.v)
  end

  def -(r : Int)
    self - m(r)
  end

  def *(r : self)
    m(@v * r.v)
  end

  def *(r : Int)
    self * m(r)
  end

  def //(r : self)
    self * r.inv
  end

  def //(r : Int)
    self // m(r)
  end

  def **(n : Int)
    powr(self, n)
  end

  def inv
    m(ext_gcd(@v.to_i32, @@mod)[1])
  end


  private def m(v : Int)
    self.class.new(v)
  end
end
ModInt.new_type(Mint, 10**9+7)

solve(ProconIO.new)
0