結果

問題 No.2695 Warp Zone
ユーザー ZrjaKZrjaK
提出日時 2024-03-28 17:39:18
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 553 ms / 2,000 ms
コード長 22,543 bytes
コンパイル時間 6,867 ms
コンパイル使用メモリ 340,040 KB
実行使用メモリ 98,272 KB
最終ジャッジ日時 2024-03-28 17:39:32
合計ジャッジ時間 13,249 ms
ジャッジサーバーID
(参考情報)
judge14 / judge11
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,676 KB
testcase_01 AC 2 ms
6,676 KB
testcase_02 AC 2 ms
6,676 KB
testcase_03 AC 553 ms
98,272 KB
testcase_04 AC 509 ms
94,364 KB
testcase_05 AC 534 ms
94,364 KB
testcase_06 AC 523 ms
97,800 KB
testcase_07 AC 530 ms
98,272 KB
testcase_08 AC 3 ms
6,676 KB
testcase_09 AC 183 ms
35,540 KB
testcase_10 AC 2 ms
6,676 KB
testcase_11 AC 51 ms
12,448 KB
testcase_12 AC 244 ms
48,444 KB
testcase_13 AC 2 ms
6,676 KB
testcase_14 AC 324 ms
61,112 KB
testcase_15 AC 145 ms
31,496 KB
testcase_16 AC 36 ms
11,404 KB
testcase_17 AC 80 ms
19,776 KB
testcase_18 AC 417 ms
76,540 KB
testcase_19 AC 3 ms
6,676 KB
testcase_20 AC 356 ms
68,324 KB
testcase_21 AC 321 ms
60,660 KB
testcase_22 AC 124 ms
26,656 KB
testcase_23 AC 239 ms
48,264 KB
testcase_24 AC 2 ms
6,676 KB
testcase_25 AC 2 ms
6,676 KB
testcase_26 AC 2 ms
6,676 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifdef ONLINE_JUDGE
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("avx2,popcnt")
#endif
#include <bits/stdc++.h>
using namespace std;
using ll   =                long long;
using u32  =                unsigned int;
using u64  =                unsigned long long;
using i128 =                __int128;
using u128 =                __uint128_t;
using f128 =                __float128;
using ld   =                long double;
using pii  =                pair<int, int>;
using pll  =                pair<ll, ll>;
using vi   =                vector<int>;
using vvi  =                vector<vector<int>>;
using vll  =                vector<ll>;
using vvll =                vector<vector<ll>>;
using vpii =                vector<pii>;
using vpll =                vector<pll>;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = std::priority_queue<T>;
template <class T>
using pqg = std::priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
#define lb                  lower_bound
#define ub                  upper_bound
#define pb                  push_back
#define eb                  emplace_back
#define fi                  first
#define se                  second
#define mp                  make_pair
#define mt                  make_tuple
#define stoi                stoll
#define overload4(_1, _2, _3, _4, name, ...) name
#define overload3(_1, _2, _3, name, ...) name
#define rep1(n)             for(ll _ = 0; _ < n; ++_)
#define rep2(i, n)          for(ll i = 0; i < n; ++i)
#define rep3(i, a, b)       for(ll i = a; i < b; ++i)
#define rep4(i, a, b, c)    for(int i = a; i < b; i += c)
#define rep(...)            overload4(__VA_ARGS__, rep4, rep3, rep2, rep1) (__VA_ARGS__)
#define rrep1(n)            for(ll i = n; i--; )
#define rrep2(i, n)         for(ll i = n; i--; )
#define rrep3(i, a, b)      for(ll i = a; i > b; i--)
#define rrep4(i, a, b, c)   for(ll i = a; i > b; i -= c)
#define rrep(...)           overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1) (__VA_ARGS__)
#define each1(i, a)         for(auto&& i : a)
#define each2(x, y, a)      for(auto&& [x, y] : a)
#define each3(x, y, z, a)   for(auto&& [x, y, z] : a)
#define each(...)           overload4(__VA_ARGS__, each3, each2, each1) (__VA_ARGS__)
#define FOR1(a)             for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a)          for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b)       for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c)    for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a)           for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a)        for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b)     for (ll i = (b)-1; i >= ll(a); --i)
#define FOR(...)            overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1) (__VA_ARGS__)
#define FOR_R(...)          overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R) (__VA_ARGS__)
#define FOR_subset(t, s)    for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define len(x)              ll(x.size())
#define elif                else if
#define all1(i)             begin(i), end(i)
#define all2(i, a)          begin(i), begin(i) + a
#define all3(i, a, b)       begin(i) + a, begin(i) + b
#define all(...)            overload3(__VA_ARGS__, all3, all2, all1) (__VA_ARGS__)
#define rall1(i)            rbegin(i), rend(i)
#define rall2(i, a)         rbegin(i), rbegin(i) + a
#define rall3(i, a, b)      rbegin(i) + a, rbegin(i) + b
#define rall(...)           overload3(__VA_ARGS__, rall3, rall2, rall1) (__VA_ARGS__)
#define MIN(v)              *min_element(all(v))
#define MAX(v)              *max_element(all(v))
#define LB(c, x)            distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x)            distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x)           sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
#define SORT(a)             sort(all(a))
#define REV(a)              reverse(all(a))
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template<class T> auto max(const T& a){ return *max_element(all(a)); }
template<class T> auto min(const T& a){ return *min_element(all(a)); }
template <typename T, typename U>
T ceil(T x, U y) {
    return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
    return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
T bmod(T x, U y) {
    return x - y * floor(x, y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
    T q = floor(x, y);
    return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
    T sum = 0;
    for (auto &&a: A) sum += a;
    return sum;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
    int N = A.size();
    vector<T> B(N + 1);
    for (int i = 0; i < N; i++) B[i + 1] = B[i] + A[i];
    if (off == 0) B.erase(B.begin());
    return B;
}
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}
template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  assert(!que.empty());
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  assert(!que.empty());
  T a = que.back();
  que.pop_back();
  return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  while (iter--) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}
#define FASTIO
#include <unistd.h>


// https://judge.yosupo.jp/submission/21623

namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf

uint32_t pil = 0, pir = 0, por = 0;

struct Pre {
  char num[10000][4];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i][j] = n % 10 | '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

inline void load() {
  memcpy(ibuf, ibuf + pil, pir - pil);
  pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
  pil = 0;
  if (pir < SZ) ibuf[pir++] = '\n';
}

inline void flush() {
  fwrite(obuf, 1, por, stdout);
  por = 0;
}

void rd(char &c) {
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
}

void rd(string &x) {
  x.clear();
  char c;
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
  do {
    x += c;
    if (pil == pir) load();
    c = ibuf[pil++];
  } while (!isspace(c));
}

template <typename T>
void rd_real(T &x) {
  string s;
  rd(s);
  x = stod(s);
}

template <typename T>
void rd_integer(T &x) {
  if (pil + 100 > pir) load();
  char c;
  do
    c = ibuf[pil++];
  while (c < '-');
  bool minus = 0;
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (c == '-') { minus = 1, c = ibuf[pil++]; }
  }
  x = 0;
  while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (minus) x = -x;
  }
}

void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }

template <class T, class U>
void rd(pair<T, U> &p) {
  return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
  if constexpr (N < std::tuple_size<T>::value) {
    auto &x = std::get<N>(t);
    rd(x);
    rd_tuple<N + 1>(t);
  }
}
template <class... T>
void rd(tuple<T...> &tpl) {
  rd_tuple(tpl);
}

template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
  for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
  for (auto &d: x) rd(d);
}

void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
  rd(h), read(t...);
}

void wt(const char c) {
  if (por == SZ) flush();
  obuf[por++] = c;
}
void wt(const string s) {
  for (char c: s) wt(c);
}
void wt(const char *s) {
  size_t len = strlen(s);
  for (size_t i = 0; i < len; i++) wt(s[i]);
}

template <typename T>
void wt_integer(T x) {
  if (por > SZ - 100) flush();
  if (x < 0) { obuf[por++] = '-', x = -x; }
  int outi;
  for (outi = 96; x >= 10000; outi -= 4) {
    memcpy(out + outi, pre.num[x % 10000], 4);
    x /= 10000;
  }
  if (x >= 1000) {
    memcpy(obuf + por, pre.num[x], 4);
    por += 4;
  } else if (x >= 100) {
    memcpy(obuf + por, pre.num[x] + 1, 3);
    por += 3;
  } else if (x >= 10) {
    int q = (x * 103) >> 10;
    obuf[por] = q | '0';
    obuf[por + 1] = (x - q * 10) | '0';
    por += 2;
  } else
    obuf[por++] = x | '0';
  memcpy(obuf + por, out + outi + 4, 96 - outi);
  por += 96 - outi;
}

template <typename T>
void wt_real(T x) {
  ostringstream oss;
  oss << fixed << setprecision(15) << double(x);
  string s = oss.str();
  wt(s);
}

void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }

template <class T, class U>
void wt(const pair<T, U> val) {
  wt(val.first);
  wt(' ');
  wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
  if constexpr (N < std::tuple_size<T>::value) {
    if constexpr (N > 0) { wt(' '); }
    const auto x = std::get<N>(t);
    wt(x);
    wt_tuple<N + 1>(t);
  }
}
template <class... T>
void wt(tuple<T...> tpl) {
  wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}
template <class T>
void wt(const vector<T> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}

void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  wt(head);
  if (sizeof...(Tail)) wt(' ');
  print(forward<Tail>(tail)...);
}

// gcc expansion. called automaticall after main.

void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio

using fastio::read;
using fastio::print;
using fastio::flush;

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define U32(...)   \
  u32 __VA_ARGS__; \
  read(__VA_ARGS__)
#define U64(...)   \
  u64 __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
template <typename Iterable>
auto print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") -> decltype(fastio::wt(*v.begin())) {
    for (auto it = v.begin(); it != v.end();) {
        fastio::wt(*it);
        if (++it != v.end()) fastio::wt(sep);
    }
    fastio::wt(end);
}
vvi getGraph(int n, int m, bool directed = false) {
    vvi res(n);
    rep(_, 0, m) {
        INT(u, v);
        u--, v--;
        res[u].emplace_back(v);
        if(!directed) res[v].emplace_back(u);
    }
    return res;
}
vector<vpii> getWeightedGraph(int n, int m, bool directed = false) {
    vector<vpii> res(n);
    rep(_, 0, m) {
        INT(u, v, w);
        u--, v--;
        res[u].emplace_back(v, w);
        if(!directed) res[v].emplace_back(u, w);
    }
    return res;
}
template <class... Args> auto ndvector(size_t n, Args &&...args) {
    if constexpr (sizeof...(args) == 1) {
        return vector(n, args...);
    } else {
        return vector(n, ndvector(args...));
    }
}

#line 2 "graph/base.hpp"

template <typename T>
struct Edge {
  int frm, to;
  T cost;
  int id;
};

template <typename T = int, bool directed = false>
struct Graph {
  static constexpr bool is_directed = directed;
  int N, M;
  using cost_type = T;
  using edge_type = Edge<T>;
  vector<edge_type> edges;
  vector<int> indptr;
  vector<edge_type> csr_edges;
  vc<int> vc_deg, vc_indeg, vc_outdeg;
  bool prepared;

  class OutgoingEdges {
  public:
    OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}

    const edge_type* begin() const {
      if (l == r) { return 0; }
      return &G->csr_edges[l];
    }

    const edge_type* end() const {
      if (l == r) { return 0; }
      return &G->csr_edges[r];
    }

  private:
    const Graph* G;
    int l, r;
  };

  bool is_prepared() { return prepared; }

  Graph() : N(0), M(0), prepared(0) {}
  Graph(int N) : N(N), M(0), prepared(0) {}

  void build(int n) {
    N = n, M = 0;
    prepared = 0;
    edges.clear();
    indptr.clear();
    csr_edges.clear();
    vc_deg.clear();
    vc_indeg.clear();
    vc_outdeg.clear();
  }

  void add(int frm, int to, T cost = 1, int i = -1) {
    assert(!prepared);
    assert(0 <= frm && 0 <= to && to < N);
    if (i == -1) i = M;
    auto e = edge_type({frm, to, cost, i});
    edges.eb(e);
    ++M;
  }

#ifdef FASTIO
  // wt, off
  void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }

  void read_graph(int M, bool wt = false, int off = 1) {
    for (int m = 0; m < M; ++m) {
      INT(a, b);
      a -= off, b -= off;
      if (!wt) {
        add(a, b);
      } else {
        T c;
        read(c);
        add(a, b, c);
      }
    }
    build();
  }
#endif

  void build() {
    assert(!prepared);
    prepared = true;
    indptr.assign(N + 1, 0);
    for (auto&& e: edges) {
      indptr[e.frm + 1]++;
      if (!directed) indptr[e.to + 1]++;
    }
    for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
    auto counter = indptr;
    csr_edges.resize(indptr.back() + 1);
    for (auto&& e: edges) {
      csr_edges[counter[e.frm]++] = e;
      if (!directed)
        csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
    }
  }

  OutgoingEdges operator[](int v) const {
    assert(prepared);
    return {this, indptr[v], indptr[v + 1]};
  }

  vc<int> deg_array() {
    if (vc_deg.empty()) calc_deg();
    return vc_deg;
  }

  pair<vc<int>, vc<int>> deg_array_inout() {
    if (vc_indeg.empty()) calc_deg_inout();
    return {vc_indeg, vc_outdeg};
  }

  int deg(int v) {
    if (vc_deg.empty()) calc_deg();
    return vc_deg[v];
  }

  int in_deg(int v) {
    if (vc_indeg.empty()) calc_deg_inout();
    return vc_indeg[v];
  }

  int out_deg(int v) {
    if (vc_outdeg.empty()) calc_deg_inout();
    return vc_outdeg[v];
  }

#ifdef FASTIO
  void debug() {
    print("Graph");
    if (!prepared) {
      print("frm to cost id");
      for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
    } else {
      print("indptr", indptr);
      print("frm to cost id");
      FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
    }
  }
#endif

  vc<int> new_idx;
  vc<bool> used_e;

  // G における頂点 V[i] が、新しいグラフで i になるようにする
  // {G, es}
  Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
    if (len(new_idx) != N) new_idx.assign(N, -1);
    if (len(used_e) != M) used_e.assign(M, 0);
    int n = len(V);
    FOR(i, n) new_idx[V[i]] = i;
    Graph<T, directed> G(n);
    vc<int> history;
    FOR(i, n) {
      for (auto&& e: (*this)[V[i]]) {
        if (used_e[e.id]) continue;
        int a = e.frm, b = e.to;
        if (new_idx[a] != -1 && new_idx[b] != -1) {
          history.eb(e.id);
          used_e[e.id] = 1;
          int eid = (keep_eid ? e.id : -1);
          G.add(new_idx[a], new_idx[b], e.cost, eid);
        }
      }
    }
    FOR(i, n) new_idx[V[i]] = -1;
    for (auto&& eid: history) used_e[eid] = 0;
    G.build();
    return G;
  }

private:
  void calc_deg() {
    assert(vc_deg.empty());
    vc_deg.resize(N);
    for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
  }

  void calc_deg_inout() {
    assert(vc_indeg.empty());
    vc_indeg.resize(N);
    vc_outdeg.resize(N);
    for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
  }
};
#line 3 "graph/shortest_path/dijkstra.hpp"

template <typename T, typename GT>
pair<vc<T>, vc<int>> dijkstra_dense(GT& G, int s) {
  const int N = G.N;
  vc<T> dist(N, infty<T>);
  vc<int> par(N, -1);
  vc<bool> done(N);
  dist[s] = 0;
  while (1) {
    int v = -1;
    T mi = infty<T>;
    FOR(i, N) {
      if (!done[i] && chmin(mi, dist[i])) v = i;
    }
    if (v == -1) break;
    done[v] = 1;
    for (auto&& e: G[v]) {
      if (chmin(dist[e.to], dist[v] + e.cost)) par[e.to] = v;
    }
  }
  return {dist, par};
}

template <typename T, typename GT, bool DENSE = false>
pair<vc<T>, vc<int>> dijkstra(GT& G, int v) {
  if (DENSE) return dijkstra_dense<T>(G, v);
  auto N = G.N;
  vector<T> dist(N, infty<T>);
  vector<int> par(N, -1);
  using P = pair<T, int>;

  priority_queue<P, vector<P>, greater<P>> que;

  dist[v] = 0;
  que.emplace(0, v);
  while (!que.empty()) {
    auto [dv, v] = que.top();
    que.pop();
    if (dv > dist[v]) continue;
    for (auto&& e: G[v]) {
      if (chmin(dist[e.to], dist[e.frm] + e.cost)) {
        par[e.to] = e.frm;
        que.emplace(dist[e.to], e.to);
      }
    }
  }
  return {dist, par};
}

// 多点スタート。[dist, par, root]
template <typename T, typename GT>
tuple<vc<T>, vc<int>, vc<int>> dijkstra(GT& G, vc<int> vs) {
  assert(G.is_prepared());
  int N = G.N;
  vc<T> dist(N, infty<T>);
  vc<int> par(N, -1);
  vc<int> root(N, -1);

  using P = pair<T, int>;

  priority_queue<P, vector<P>, greater<P>> que;

  for (auto&& v: vs) {
    dist[v] = 0;
    root[v] = v;
    que.emplace(T(0), v);
  }

  while (!que.empty()) {
    auto [dv, v] = que.top();
    que.pop();
    if (dv > dist[v]) continue;
    for (auto&& e: G[v]) {
      if (chmin(dist[e.to], dist[e.frm] + e.cost)) {
        root[e.to] = root[e.frm];
        par[e.to] = e.frm;
        que.push(mp(dist[e.to], e.to));
      }
    }
  }
  return {dist, par, root};
}

void solve() {
    INT(H, W, N);
    Graph<ll, 1> G(2 * N + 2);
    int tot = 0;
    map<pii, int> M;
    auto F = [&] (int x, int y) -> int {
        if (!M.contains({x, y})) M[{x, y}] = tot++;
        return M[{x, y}];
    };
    G.add(F(1, 1), F(H, W), (H - 1) + (W - 1));
    vc<tuple<int, int, int, int>> ABCD;
    rep(N) {
        INT(a, b, c, d);
        ABCD.eb(a, b, c, d);
        G.add(F(1, 1), F(a, b), (a - 1) + (b - 1));
        G.add(F(a, b), F(c, d), 1);
        G.add(F(c, d), F(H, W), (H - c) + (W - d));
    }
    rep(i, N) rep(j, N) {
        auto [a1, b1, c1, d1] = ABCD[i];
        auto [a2, b2, c2, d2] = ABCD[j];
        G.add(F(c1, d1), F(a2, b2), abs(c1 - a2) + abs(d1 - b2));
        G.add(F(c2, d2), F(a1, b1), abs(c2 - a1) + abs(d2 - b1));
    }
    G.build();
    auto [dist, _] = dijkstra<ll>(G, F(1, 1));
    print(dist[F(H, W)]);
    
}

signed main() {
    int T = 1;
    // read(T);
    while (T--) {
        solve();
    }
    return 0;
}
0