結果

問題 No.2933 Range ROT Query
ユーザー amesyuamesyu
提出日時 2024-09-09 12:36:00
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,489 ms / 3,000 ms
コード長 7,048 bytes
コンパイル時間 600 ms
コンパイル使用メモリ 82,232 KB
実行使用メモリ 96,036 KB
最終ジャッジ日時 2024-10-02 00:29:58
合計ジャッジ時間 51,519 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 40 ms
55,628 KB
testcase_01 AC 41 ms
54,520 KB
testcase_02 AC 41 ms
55,896 KB
testcase_03 AC 41 ms
54,484 KB
testcase_04 AC 51 ms
62,204 KB
testcase_05 AC 45 ms
55,372 KB
testcase_06 AC 50 ms
62,868 KB
testcase_07 AC 49 ms
62,076 KB
testcase_08 AC 41 ms
54,224 KB
testcase_09 AC 44 ms
54,804 KB
testcase_10 AC 51 ms
63,120 KB
testcase_11 AC 44 ms
55,772 KB
testcase_12 AC 1,299 ms
94,152 KB
testcase_13 AC 1,323 ms
94,136 KB
testcase_14 AC 1,314 ms
93,916 KB
testcase_15 AC 1,287 ms
93,804 KB
testcase_16 AC 1,333 ms
93,684 KB
testcase_17 AC 1,427 ms
93,948 KB
testcase_18 AC 1,454 ms
94,120 KB
testcase_19 AC 1,489 ms
94,448 KB
testcase_20 AC 1,457 ms
96,036 KB
testcase_21 AC 802 ms
94,000 KB
testcase_22 AC 794 ms
93,936 KB
testcase_23 AC 813 ms
93,936 KB
testcase_24 AC 783 ms
93,932 KB
testcase_25 AC 799 ms
93,940 KB
testcase_26 AC 1,425 ms
93,876 KB
testcase_27 AC 1,389 ms
94,008 KB
testcase_28 AC 1,410 ms
93,736 KB
testcase_29 AC 1,437 ms
94,100 KB
testcase_30 AC 1,340 ms
93,936 KB
testcase_31 AC 1,395 ms
93,800 KB
testcase_32 AC 1,104 ms
91,116 KB
testcase_33 AC 1,203 ms
89,144 KB
testcase_34 AC 1,223 ms
89,004 KB
testcase_35 AC 1,063 ms
88,884 KB
testcase_36 AC 1,316 ms
90,316 KB
testcase_37 AC 991 ms
88,964 KB
testcase_38 AC 1,002 ms
92,020 KB
testcase_39 AC 1,122 ms
88,708 KB
testcase_40 AC 1,168 ms
88,724 KB
testcase_41 AC 1,367 ms
93,232 KB
testcase_42 AC 938 ms
87,240 KB
testcase_43 AC 952 ms
87,240 KB
testcase_44 AC 1,155 ms
86,920 KB
testcase_45 AC 1,070 ms
91,920 KB
testcase_46 AC 1,132 ms
88,196 KB
testcase_47 AC 1,121 ms
86,048 KB
testcase_48 AC 947 ms
90,420 KB
testcase_49 AC 1,125 ms
91,152 KB
testcase_50 AC 1,035 ms
86,992 KB
testcase_51 AC 1,158 ms
91,144 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

sigma = 26


# 遅延セグメント木
class lazy_segtree:
    def update(self, k):
        self.d[k] = self.op(self.d[2 * k], self.d[2 * k + 1])

    def all_apply(self, k, f):
        self.d[k] = self.mapping(f, self.d[k])
        if k < self.size:
            self.lz[k] = self.composition(f, self.lz[k])

    def push(self, k):
        self.all_apply(2 * k, self.lz[k])
        self.all_apply(2 * k + 1, self.lz[k])
        self.lz[k] = self.identity

    def __init__(self, V, OP, E, MAPPING, COMPOSITION, ID):
        self.n = len(V)
        self.log = (self.n - 1).bit_length()
        self.size = 1 << self.log
        self.d = [E for i in range(2 * self.size)]
        self.lz = [ID for i in range(self.size)]
        self.e = E
        self.op = OP
        self.mapping = MAPPING
        self.composition = COMPOSITION
        self.identity = ID
        for i in range(self.n):
            self.d[self.size + i] = V[i]
        for i in range(self.size - 1, 0, -1):
            self.update(i)

    def set(self, p, x):
        assert 0 <= p and p < self.n
        p += self.size
        for i in range(self.log, 0, -1):
            self.push(p >> i)
        self.d[p] = x
        for i in range(1, self.log + 1):
            self.update(p >> i)

    def get(self, p):
        assert 0 <= p and p < self.n
        p += self.size
        for i in range(self.log, 0, -1):
            self.push(p >> i)
        return self.d[p]

    def prod(self, l, r):
        assert 0 <= l and l <= r and r <= self.n
        if l == r:
            return self.e
        l += self.size
        r += self.size
        for i in range(self.log, 0, -1):
            if ((l >> i) << i) != l:
                self.push(l >> i)
            if ((r >> i) << i) != r:
                self.push(r >> i)
        sml, smr = self.e, self.e
        while l < r:
            if l & 1:
                sml = self.op(sml, self.d[l])
                l += 1
            if r & 1:
                r -= 1
                smr = self.op(self.d[r], smr)
            l >>= 1
            r >>= 1
        return self.op(sml, smr)

    def all_prod(self):
        return self.d[1]

    def apply_point(self, p, f):
        assert 0 <= p and p < self.n
        p += self.size
        for i in range(self.log, 0, -1):
            self.push(p >> i)
        self.d[p] = self.mapping(f, self.d[p])
        for i in range(1, self.log + 1):
            self.update(p >> i)

    def apply(self, l, r, f):
        assert 0 <= l and l <= r and r <= self.n
        if l == r:
            return
        l += self.size
        r += self.size
        for i in range(self.log, 0, -1):
            if ((l >> i) << i) != l:
                self.push(l >> i)
            if ((r >> i) << i) != r:
                self.push((r - 1) >> i)
        l2, r2 = l, r
        while l < r:
            if l & 1:
                self.all_apply(l, f)
                l += 1
            if r & 1:
                r -= 1
                self.all_apply(r, f)
            l >>= 1
            r >>= 1
        l, r = l2, r2
        for i in range(1, self.log + 1):
            if ((l >> i) << i) != l:
                self.update(l >> i)
            if ((r >> i) << i) != r:
                self.update((r - 1) >> i)

    def max_right(self, l, g):
        assert 0 <= l and l <= self.n
        assert g(self.e)
        if l == self.n:
            return self.n
        l += self.size
        for i in range(self.log, 0, -1):
            self.push(l >> i)
        sm = self.e
        while 1:
            while l % 2 == 0:
                l >>= 1
            if not (g(self.op(sm, self.d[l]))):
                while l < self.size:
                    self.push(l)
                    l = 2 * l
                    if g(self.op(sm, self.d[l])):
                        sm = self.op(sm, self.d[l])
                        l += 1
                return l - self.size
            sm = self.op(sm, self.d[l])
            l += 1
            if (l & -l) == l:
                break
        return self.n

    def min_left(self, r, g):
        assert 0 <= r and r <= self.n
        assert g(self.e)
        if r == 0:
            return 0
        r += self.size
        for i in range(self.log, 0, -1):
            self.push((r - 1) >> i)
        sm = self.e
        while 1:
            r -= 1
            while r > 1 and (r % 2):
                r >>= 1
            if not (g(self.op(self.d[r], sm))):
                while r < self.size:
                    self.push(r)
                    r = 2 * r + 1
                    if g(self.op(self.d[r], sm)):
                        sm = self.op(self.d[r], sm)
                        r -= 1
                return r + 1 - self.size
            sm = self.op(self.d[r], sm)
            if (r & -r) == r:
                break
        return 0


# Fenwick木
class fenwick_tree:
    n = 1
    data = [0 for i in range(n)]

    def __init__(self, N):
        self.n = N
        self.data = [0 for i in range(N)]

    def add(self, p, x):
        assert 0 <= p < self.n, "0<=p<n,p={0},n={1}".format(p, self.n)
        p += 1
        while p <= self.n:
            self.data[p - 1] += x
            p += p & -p

    def sum(self, l, r):
        assert 0 <= l and l <= r and r <= self.n, "0<=l<=r<=n,l={0},r={1},n={2}".format(l, r, self.n)
        return self.sum0(r) - self.sum0(l)

    def sum0(self, r):
        s = 0
        while r > 0:
            s += self.data[r - 1]
            r -= r & -r
        return s


def op(x, y):
    if x == -1 or y == -1:
        return -1

    if x == sigma:
        return y

    if y == sigma:
        return x

    if x == y:
        return x
    else:
        return -1


e = sigma  # ワイルドカード


def mapping(f, x):
    if x == -1:
        return -1

    if x == sigma:
        return sigma

    return (x + f) % sigma


def composition(f, g):
    return (f + g) % sigma


id_ = 0


S = input()
T = input()

diff = []

for s, t in zip(S, T):
    diff.append((ord(s) - ord(t)) % sigma)

seg = lazy_segtree(diff, op, e, mapping, composition, id_)

s_imos = fenwick_tree(len(S) + 1)

Q = int(input())

for _ in range(Q):
    cmd, *query = list(map(int, input().split()))

    if cmd == 1:
        l, r, x = query

        seg.apply(min(l - 1, len(S), len(T)), min(r, len(S), len(T)), x)
        s_imos.add(l - 1, x)
        s_imos.add(r, -x)

    elif cmd == 2:
        l, r, x = query

        seg.apply(min(l - 1, len(S), len(T)), min(r, len(S), len(T)), -x % sigma)

    else:
        p = query[0]

        idx = seg.max_right(p - 1, lambda x: x == 0 or x == sigma)

        if idx < min(len(S), len(T)):
            s = (s_imos.sum(0, idx + 1) + ord(S[idx]) - ord("a")) % sigma
            t = (s - seg.get(idx)) % sigma
            if s > t:
                print("Greater")
            elif s < t:
                print("Lesser")

        else:
            if len(S) > len(T):
                print("Greater")
            elif len(S) < len(T):
                print("Lesser")
            else:
                print("Equals")

0