結果
問題 | No.2898 Update Max |
ユーザー | PNJ |
提出日時 | 2024-09-20 23:19:38 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 1,187 bytes |
コンパイル時間 | 307 ms |
コンパイル使用メモリ | 82,208 KB |
実行使用メモリ | 135,748 KB |
最終ジャッジ日時 | 2024-09-20 23:19:50 |
合計ジャッジ時間 | 8,937 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | WA | - |
ソースコード
mod = 998244353 n = 10**6 inv = [1 for j in range(n+1)] for a in range(2,n+1): # ax + py = 1 <=> rx + p(-x-qy) = -q => x = -(inv[r]) * (p//a) (r = p % a) res = (mod - inv[mod%a]) * (mod // a) inv[a] = res % mod fact = [1 for i in range(n+1)] for i in range(1,n+1): fact[i] = fact[i-1]*i % mod fact_inv = [1 for i in range(n+1)] fact_inv[-1] = pow(fact[-1],mod-2,mod) for i in range(n,0,-1): fact_inv[i-1] = fact_inv[i]*i % mod def binom(n,r): if n < r or n < 0 or r < 0: return 0 res = fact_inv[n-r] * fact_inv[r] % mod res *= fact[n] res %= mod return res N = int(input()) A = list(map(int,input().split())) X = [0 for i in range(N)] Q = [-1 for i in range(N + 1)] for i in range(N): if A[i] == -1: X[i] += 1 if i > 0: X[i] += X[i - 1] else: Q[A[i]] = i S = set(A) R = [] for i in range(1,N + 1): if i not in S: R.append(i) n = len(R) M = X[-1] m = M j = M ans = 0 for i in range(N,-1,-1): if Q[i] == -1: res = fact[j - 1] * fact[M - j] % mod ans = (ans + res * binom(M + 1,j) % mod) % mod j -= 1 else: n = X[Q[i]] ans = (ans + fact[m] * binom(n,m) % mod + fact[X[-1] - n]) % mod M = min(M,n) print(ans)