結果

問題 No.2985 May Count Induced C4 Subgraphs
ユーザー tko919tko919
提出日時 2024-12-10 02:41:47
言語 C++23(gcc13)
(gcc 13.2.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 21,274 bytes
コンパイル時間 5,126 ms
コンパイル使用メモリ 331,948 KB
実行使用メモリ 822,892 KB
最終ジャッジ日時 2024-12-10 02:43:06
合計ジャッジ時間 71,140 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
429,864 KB
testcase_01 AC 1 ms
429,812 KB
testcase_02 AC 2 ms
429,948 KB
testcase_03 AC 2 ms
10,496 KB
testcase_04 AC 2 ms
429,672 KB
testcase_05 AC 2 ms
239,964 KB
testcase_06 TLE -
testcase_07 MLE -
testcase_08 TLE -
testcase_09 TLE -
testcase_10 TLE -
testcase_11 MLE -
testcase_12 AC 456 ms
35,776 KB
testcase_13 AC 336 ms
35,608 KB
testcase_14 AC 375 ms
35,612 KB
testcase_15 AC 245 ms
35,480 KB
testcase_16 AC 279 ms
35,604 KB
testcase_17 TLE -
testcase_18 TLE -
testcase_19 TLE -
testcase_20 TLE -
testcase_21 TLE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "library/Template/template.hpp"
#include <bits/stdc++.h>
using namespace std;

#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)
#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)
#define ALL(v) (v).begin(), (v).end()
#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())
#define SZ(v) (int)v.size()
#define MIN(v) *min_element(ALL(v))
#define MAX(v) *max_element(ALL(v))
#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())
#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())

using uint = unsigned int;
using ll = long long int;
using ull = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;
const int inf = 0x3fffffff;
const ll INF = 0x1fffffffffffffff;

template <typename T> inline bool chmax(T &a, T b) {
    if (a < b) {
        a = b;
        return 1;
    }
    return 0;
}
template <typename T> inline bool chmin(T &a, T b) {
    if (a > b) {
        a = b;
        return 1;
    }
    return 0;
}
template <typename T, typename U> T ceil(T x, U y) {
    assert(y != 0);
    if (y < 0)
        x = -x, y = -y;
    return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U> T floor(T x, U y) {
    assert(y != 0);
    if (y < 0)
        x = -x, y = -y;
    return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T> int popcnt(T x) {
    return __builtin_popcountll(x);
}
template <typename T> int topbit(T x) {
    return (x == 0 ? -1 : 63 - __builtin_clzll(x));
}
template <typename T> int lowbit(T x) {
    return (x == 0 ? -1 : __builtin_ctzll(x));
}

template <class T, class U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
    os << "P(" << p.first << ", " << p.second << ")";
    return os;
}
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {
    os << "{";
    for (int i = 0; i < vec.size(); i++) {
        os << vec[i] << (i + 1 == vec.size() ? "" : ", ");
    }
    os << "}";
    return os;
}
template <typename T, typename U>
ostream &operator<<(ostream &os, const map<T, U> &map_var) {
    os << "{";
    for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {
        os << "(" << itr->first << ", " << itr->second << ")";
        itr++;
        if (itr != map_var.end())
            os << ", ";
        itr--;
    }
    os << "}";
    return os;
}
template <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {
    os << "{";
    for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {
        os << *itr;
        ++itr;
        if (itr != set_var.end())
            os << ", ";
        itr--;
    }
    os << "}";
    return os;
}
#ifdef LOCAL
#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)
#else
#define show(...) true
#endif
template <typename T> void _show(int i, T name) {
    cerr << '\n';
}
template <typename T1, typename T2, typename... T3>
void _show(int i, const T1 &a, const T2 &b, const T3 &...c) {
    for (; a[i] != ',' && a[i] != '\0'; i++)
        cerr << a[i];
    cerr << ":" << b << " ";
    _show(i + 1, a, c...);
}
#line 2 "library/Utility/fastio.hpp"
#include <unistd.h>
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf

uint32_t pil = 0, pir = 0, por = 0;

struct Pre {
    char num[10000][4];
    constexpr Pre() : num() {
        for (int i = 0; i < 10000; i++) {
            int n = i;
            for (int j = 3; j >= 0; j--) {
                num[i][j] = n % 10 | '0';
                n /= 10;
            }
        }
    }
} constexpr pre;

inline void load() {
    memmove(ibuf, ibuf + pil, pir - pil);
    pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
    pil = 0;
    if (pir < SZ)
        ibuf[pir++] = '\n';
}

inline void flush() {
    fwrite(obuf, 1, por, stdout);
    por = 0;
}

void rd(char &c) {
    do {
        if (pil + 1 > pir)
            load();
        c = ibuf[pil++];
    } while (isspace(c));
}

void rd(string &x) {
    x.clear();
    char c;
    do {
        if (pil + 1 > pir)
            load();
        c = ibuf[pil++];
    } while (isspace(c));
    do {
        x += c;
        if (pil == pir)
            load();
        c = ibuf[pil++];
    } while (!isspace(c));
}

template <typename T> void rd_real(T &x) {
    string s;
    rd(s);
    x = stod(s);
}

template <typename T> void rd_integer(T &x) {
    if (pil + 100 > pir)
        load();
    char c;
    do
        c = ibuf[pil++];
    while (c < '-');
    bool minus = 0;
    if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
        if (c == '-') {
            minus = 1, c = ibuf[pil++];
        }
    }
    x = 0;
    while ('0' <= c) {
        x = x * 10 + (c & 15), c = ibuf[pil++];
    }
    if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
        if (minus)
            x = -x;
    }
}

void rd(int &x) {
    rd_integer(x);
}
void rd(ll &x) {
    rd_integer(x);
}
void rd(i128 &x) {
    rd_integer(x);
}
void rd(uint &x) {
    rd_integer(x);
}
void rd(ull &x) {
    rd_integer(x);
}
void rd(u128 &x) {
    rd_integer(x);
}
void rd(double &x) {
    rd_real(x);
}
void rd(long double &x) {
    rd_real(x);
}

template <class T, class U> void rd(pair<T, U> &p) {
    return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T> void rd_tuple(T &t) {
    if constexpr (N < std::tuple_size<T>::value) {
        auto &x = std::get<N>(t);
        rd(x);
        rd_tuple<N + 1>(t);
    }
}
template <class... T> void rd(tuple<T...> &tpl) {
    rd_tuple(tpl);
}

template <size_t N = 0, typename T> void rd(array<T, N> &x) {
    for (auto &d : x)
        rd(d);
}
template <class T> void rd(vector<T> &x) {
    for (auto &d : x)
        rd(d);
}

void read() {}
template <class H, class... T> void read(H &h, T &...t) {
    rd(h), read(t...);
}

void wt(const char c) {
    if (por == SZ)
        flush();
    obuf[por++] = c;
}
void wt(const string s) {
    for (char c : s)
        wt(c);
}
void wt(const char *s) {
    size_t len = strlen(s);
    for (size_t i = 0; i < len; i++)
        wt(s[i]);
}

template <typename T> void wt_integer(T x) {
    if (por > SZ - 100)
        flush();
    if (x < 0) {
        obuf[por++] = '-', x = -x;
    }
    int outi;
    for (outi = 96; x >= 10000; outi -= 4) {
        memcpy(out + outi, pre.num[x % 10000], 4);
        x /= 10000;
    }
    if (x >= 1000) {
        memcpy(obuf + por, pre.num[x], 4);
        por += 4;
    } else if (x >= 100) {
        memcpy(obuf + por, pre.num[x] + 1, 3);
        por += 3;
    } else if (x >= 10) {
        int q = (x * 103) >> 10;
        obuf[por] = q | '0';
        obuf[por + 1] = (x - q * 10) | '0';
        por += 2;
    } else
        obuf[por++] = x | '0';
    memcpy(obuf + por, out + outi + 4, 96 - outi);
    por += 96 - outi;
}

template <typename T> void wt_real(T x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << double(x);
    string s = oss.str();
    wt(s);
}

void wt(int x) {
    wt_integer(x);
}
void wt(ll x) {
    wt_integer(x);
}
void wt(i128 x) {
    wt_integer(x);
}
void wt(uint x) {
    wt_integer(x);
}
void wt(ull x) {
    wt_integer(x);
}
void wt(u128 x) {
    wt_integer(x);
}
void wt(double x) {
    wt_real(x);
}
void wt(long double x) {
    wt_real(x);
}

template <class T, class U> void wt(const pair<T, U> val) {
    wt(val.first);
    wt(' ');
    wt(val.second);
}
template <size_t N = 0, typename T> void wt_tuple(const T t) {
    if constexpr (N < std::tuple_size<T>::value) {
        if constexpr (N > 0) {
            wt(' ');
        }
        const auto x = std::get<N>(t);
        wt(x);
        wt_tuple<N + 1>(t);
    }
}
template <class... T> void wt(tuple<T...> tpl) {
    wt_tuple(tpl);
}
template <class T, size_t S> void wt(const array<T, S> val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
        if (i)
            wt(' ');
        wt(val[i]);
    }
}
template <class T> void wt(const vector<T> val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
        if (i)
            wt(' ');
        wt(val[i]);
    }
}

void print() {
    wt('\n');
}
template <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {
    wt(head);
    if (sizeof...(Tail))
        wt(' ');
    print(forward<Tail>(tail)...);
}
void __attribute__((destructor)) _d() {
    flush();
}
} // namespace fastio

using fastio::flush;
using fastio::print;
using fastio::read;

inline void first(bool i = true) {
    print(i ? "first" : "second");
}
inline void Alice(bool i = true) {
    print(i ? "Alice" : "Bob");
}
inline void Takahashi(bool i = true) {
    print(i ? "Takahashi" : "Aoki");
}
inline void yes(bool i = true) {
    print(i ? "yes" : "no");
}
inline void Yes(bool i = true) {
    print(i ? "Yes" : "No");
}
inline void No() {
    print("No");
}
inline void YES(bool i = true) {
    print(i ? "YES" : "NO");
}
inline void NO() {
    print("NO");
}
inline void Yay(bool i = true) {
    print(i ? "Yay!" : ":(");
}
inline void Possible(bool i = true) {
    print(i ? "Possible" : "Impossible");
}
inline void POSSIBLE(bool i = true) {
    print(i ? "POSSIBLE" : "IMPOSSIBLE");
}

/**
 * @brief Fast IO
 */
#line 3 "sol.cpp"

#line 2 "library/Math/modint.hpp"

template <unsigned mod = 1000000007> struct fp {
    unsigned v;
    static constexpr int get_mod() {
        return mod;
    }
    constexpr unsigned inv() const {
        assert(v != 0);
        int x = v, y = mod, p = 1, q = 0, t = 0, tmp = 0;
        while (y > 0) {
            t = x / y;
            x -= t * y, p -= t * q;
            tmp = x, x = y, y = tmp;
            tmp = p, p = q, q = tmp;
        }
        if (p < 0)
            p += mod;
        return p;
    }
    constexpr fp(ll x = 0) : v(x >= 0 ? x % mod : (mod - (-x) % mod) % mod) {}
    fp operator-() const {
        return fp() - *this;
    }
    fp pow(ull t) {
        fp res = 1, b = *this;
        while (t) {
            if (t & 1)
                res *= b;
            b *= b;
            t >>= 1;
        }
        return res;
    }
    fp &operator+=(const fp &x) {
        if ((v += x.v) >= mod)
            v -= mod;
        return *this;
    }
    fp &operator-=(const fp &x) {
        if ((v += mod - x.v) >= mod)
            v -= mod;
        return *this;
    }
    fp &operator*=(const fp &x) {
        v = ull(v) * x.v % mod;
        return *this;
    }
    fp &operator/=(const fp &x) {
        v = ull(v) * x.inv() % mod;
        return *this;
    }
    fp operator+(const fp &x) const {
        return fp(*this) += x;
    }
    fp operator-(const fp &x) const {
        return fp(*this) -= x;
    }
    fp operator*(const fp &x) const {
        return fp(*this) *= x;
    }
    fp operator/(const fp &x) const {
        return fp(*this) /= x;
    }
    bool operator==(const fp &x) const {
        return v == x.v;
    }
    bool operator!=(const fp &x) const {
        return v != x.v;
    }
    friend istream &operator>>(istream &is, fp &x) {
        return is >> x.v;
    }
    friend ostream &operator<<(ostream &os, const fp &x) {
        return os << x.v;
    }
};

template <unsigned mod> void rd(fp<mod> &x) {
    fastio::rd(x.v);
}
template <unsigned mod> void wt(fp<mod> x) {
    fastio::wt(x.v);
}

/**
 * @brief Modint
 */
#line 2 "library/Math/comb.hpp"

template <typename T> T Inv(ll n) {
    static int md;
    static vector<T> buf({0, 1});
    if (md != T::get_mod()) {
        md = T::get_mod();
        buf = vector<T>({0, 1});
    }
    assert(n > 0);
    n %= md;
    while (SZ(buf) <= n) {
        int k = SZ(buf), q = (md + k - 1) / k;
        buf.push_back(buf[k * q - md] * q);
    }
    return buf[n];
}

template <typename T> T Fact(ll n, bool inv = 0) {
    static int md;
    static vector<T> buf({1, 1}), ibuf({1, 1});
    if (md != T::get_mod()) {
        md = T::get_mod();
        buf = ibuf = vector<T>({1, 1});
    }
    assert(n >= 0 and n < md);
    while (SZ(buf) <= n) {
        buf.push_back(buf.back() * SZ(buf));
        ibuf.push_back(ibuf.back() * Inv<T>(SZ(ibuf)));
    }
    return inv ? ibuf[n] : buf[n];
}

template <typename T> T nPr(int n, int r, bool inv = 0) {
    if (n < 0 || n < r || r < 0)
        return 0;
    return Fact<T>(n, inv) * Fact<T>(n - r, inv ^ 1);
}
template <typename T> T nCr(int n, int r, bool inv = 0) {
    if (n < 0 || n < r || r < 0)
        return 0;
    return Fact<T>(n, inv) * Fact<T>(r, inv ^ 1) * Fact<T>(n - r, inv ^ 1);
}
// sum = n, r tuples
template <typename T> T nHr(int n, int r, bool inv = 0) {
    return nCr<T>(n + r - 1, r - 1, inv);
}
// sum = n, a nonzero tuples and b tuples
template <typename T> T choose(int n, int a, int b) {
    if (n == 0)
        return !a;
    return nCr<T>(n + b - 1, a + b - 1);
}

/**
 * @brief Combination
 */
#line 6 "sol.cpp"
using Fp = fp<998244353>;
#line 2 "library/Math/matrix.hpp"

template <class T> struct Matrix {
    int h, w;
    vector<vector<T>> val;
    T det;
    Matrix() {}
    Matrix(int n) : h(n), w(n), val(vector<vector<T>>(n, vector<T>(n))) {}
    Matrix(int n, int m)
        : h(n), w(m), val(vector<vector<T>>(n, vector<T>(m))) {}
    vector<T> &operator[](const int i) {
        return val[i];
    }
    Matrix &operator+=(const Matrix &m) {
        assert(h == m.h and w == m.w);
        rep(i, 0, h) rep(j, 0, w) val[i][j] += m.val[i][j];
        return *this;
    }
    Matrix &operator-=(const Matrix &m) {
        assert(h == m.h and w == m.w);
        rep(i, 0, h) rep(j, 0, w) val[i][j] -= m.val[i][j];
        return *this;
    }
    Matrix &operator*=(const Matrix &m) {
        assert(w == m.h);
        Matrix<T> res(h, m.w);
        rep(i, 0, h) rep(j, 0, m.w) rep(k, 0, w) res.val[i][j] +=
            val[i][k] * m.val[k][j];
        *this = res;
        return *this;
    }
    Matrix operator+(const Matrix &m) const {
        return Matrix(*this) += m;
    }
    Matrix operator-(const Matrix &m) const {
        return Matrix(*this) -= m;
    }
    Matrix operator*(const Matrix &m) const {
        return Matrix(*this) *= m;
    }
    Matrix pow(ll k) {
        Matrix<T> res(h, h), c = *this;
        rep(i, 0, h) res.val[i][i] = 1;
        while (k) {
            if (k & 1)
                res *= c;
            c *= c;
            k >>= 1;
        }
        return res;
    }
    vector<int> gauss(int c = -1) {
        det = 1;
        if (val.empty())
            return {};
        if (c == -1)
            c = w;
        int cur = 0;
        vector<int> res;
        rep(i, 0, c) {
            if (cur == h)
                break;
            rep(j, cur, h) if (val[j][i] != 0) {
                swap(val[cur], val[j]);
                if (cur != j)
                    det *= -1;
                break;
            }
            det *= val[cur][i];
            if (val[cur][i] == 0)
                continue;
            rep(j, 0, h) if (j != cur) {
                T z = val[j][i] / val[cur][i];
                rep(k, i, w) val[j][k] -= val[cur][k] * z;
            }
            res.push_back(i);
            cur++;
        }
        return res;
    }
    Matrix inv() {
        assert(h == w);
        Matrix base(h, h * 2), res(h, h);
        rep(i, 0, h) rep(j, 0, h) base[i][j] = val[i][j];
        rep(i, 0, h) base[i][h + i] = 1;
        base.gauss(h);
        det = base.det;
        rep(i, 0, h) rep(j, 0, h) res[i][j] = base[i][h + j] / base[i][i];
        return res;
    }
    bool operator==(const Matrix &m) {
        assert(h == m.h and w == m.w);
        rep(i, 0, h) rep(j, 0, w) if (val[i][j] != m.val[i][j]) return false;
        return true;
    }
    bool operator!=(const Matrix &m) {
        assert(h == m.h and w == m.w);
        rep(i, 0, h) rep(j, 0, w) if (val[i][j] == m.val[i][j]) return false;
        return true;
    }
    friend istream &operator>>(istream &is, Matrix &m) {
        rep(i, 0, m.h) rep(j, 0, m.w) is >> m[i][j];
        return is;
    }
    friend ostream &operator<<(ostream &os, Matrix &m) {
        rep(i, 0, m.h) {
            rep(j, 0, m.w) os << m[i][j]
                              << (j == m.w - 1 and i != m.h - 1 ? '\n' : ' ');
        }
        return os;
    }
};

/**
 * @brief Matrix
 */
#line 8 "sol.cpp"

using P = pair<int, int>;
using T = pair<int, P>;
vector<T> EnumTriangle(int n, vector<P> &es) {
    vector<int> deg(n);
    for (auto &[u, v] : es)
        deg[u]++, deg[v]++;
    vector g(n, vector<int>());
    for (auto &[u, v] : es) {
        if (P{deg[u], u} > P{deg[v], v})
            swap(u, v);
        g[u].push_back(v);
    }
    vector<int> used(n);
    vector<T> res;
    for (auto &[u, v] : es) {
        for (auto &t : g[u])
            used[t] = 1;
        for (auto &t : g[v])
            if (used[t]) {
                res.push_back(T{t, P{u, v}});
            }
        for (auto &t : g[u])
            used[t] = 0;
    }
    return res;
}

class CountingC4 {
  private:
    int V, threshold;
    vector<vector<int>> G;
    vector<vector<array<int, 2>>> memo;
    vector<int> flag1, flag2;
    void process_high_degree(long long &ans) {
        for (int i = 0; i < V; ++i) {
            if ((int)G[i].size() <= threshold)
                continue;
            for (const int u : G[i]) {
                if (u > i)
                    flag1[u] = 1;
                flag2[u] = 1;
            }
            for (int j = 0; j < i; ++j) {
                if ((int)G[j].size() > threshold)
                    continue;
                long long cnt1 = 0, cnt2 = 0;
                for (const int u : G[j]) {
                    if (u < j || !flag2[u])
                        continue;
                    if ((int)G[u].size() > threshold)
                        ++cnt1;
                    else
                        ++cnt2;
                }
                ans += (cnt1 + cnt2) * (cnt1 + cnt2 - 1) / 2;
            }
            for (int j = i + 1; j < V; ++j) {
                long long cnt = 0;
                for (const int u : G[j]) {
                    if (flag1[u])
                        ++cnt;
                }
                ans += cnt * (cnt - 1) / 2;
            }
            for (const int u : G[i])
                flag1[u] = flag2[u] = 0;
        }
    }
    void process_low_degree(long long &ans) {
        for (int i = 0; i < V; ++i) {
            if ((int)G[i].size() > threshold)
                continue;
            for (const int u : G[i]) {
                for (const int v : G[i]) {
                    if (v > u)
                        memo[u].push_back({i, v});
                }
            }
        }
        for (int i = 0; i < V; ++i) {
            for (const auto &e : memo[i]) {
                if (e[0] < i)
                    ++flag1[e[1]];
                else
                    ++flag2[e[1]];
            }
            for (const auto &e : memo[i]) {
                ans += (long long)(flag1[e[1]] + 2 * flag2[e[1]] - 1) *
                       flag1[e[1]] / 2;
                flag1[e[1]] = flag2[e[1]] = 0;
            }
        }
    }

  public:
    CountingC4(const int node_size)
        : V(node_size), threshold(0), G(V), memo(V), flag1(V, 0), flag2(V, 0) {}
    void add_edge(const int u, const int v) {
        G[u].push_back(v), G[v].push_back(u);
        ++threshold;
    }
    long long solve() {
        threshold = floor(sqrt(2 * threshold)) / 2;
        long long ans = 0;
        process_high_degree(ans);
        process_low_degree(ans);
        return ans;
    }
};

int main() {
    Fp T = Fp(-3).inv();

    // coe={1,998244352,1,1,998244352,998244352,998244352,665496236,1,332748117}

    int n, m;
    read(n, m);
    if (n < 4) {
        print(T, 0);
        return 0;
    }
    vector<P> es;
    vector<int> deg(n);
    CountingC4 buf(n);
    rep(_, 0, m) {
        int x, y;
        read(x, y);
        x--, y--;
        deg[x]++;
        deg[y]++;
        es.push_back({x, y});
        buf.add_edge(x, y);
    }

    Fp ret = nCr<Fp>(n, 4);                // x1
    ret += Fp(m) * nCr<Fp>(n - 2, 2) * -1; // x2
    {
        Fp sum;
        rep(v, 0, n) sum += nCr<Fp>(deg[v], 2);
        ret += sum * (n - 3);         // x3
        ret += (nCr<Fp>(m, 2) - sum); // x4
    }
    {
        Fp sum;
        rep(v, 0, n) sum += nCr<Fp>(deg[v], 3);
        ret += sum * -1; // x5
    }

    auto tri = EnumTriangle(n, es);
    {
        Fp sum;
        for (auto &[u, v] : es)
            sum += Fp(deg[u] - 1) * (deg[v] - 1);
        sum -= SZ(tri) * 3;
        ret += sum * -1; // x6
    }
    ret += Fp(n - 3) * SZ(tri) * -1; // x7

    ll C4 = buf.solve();
    show(C4);
    ret += Fp(C4) * 665496236; // x8

    vector<int> vcnt(n);
    map<P, int> ecnt;
    for (auto &[u, vw] : tri) {
        auto [v, w] = vw;
        vcnt[u]++;
        vcnt[v]++;
        vcnt[w]++;
        int a[3] = {u, v, w};
        sort(a, a + 3);
        u = a[0], v = a[1], w = a[2];
        ecnt[{u, v}]++;
        ecnt[{v, w}]++;
        ecnt[{u, w}]++;
    }

    {
        Fp sum;
        rep(v, 0, n) sum += Fp(deg[v] - 2) * vcnt[v];
        ret += sum; // x9
    }
    {
        Fp sum;
        for (auto &[e, c] : ecnt)
            sum += nCr<Fp>(c, 2);
        ret += sum * 332748117; // x10
    }
    print(T, ret);

    // {
    //     Fp A, B;
    //     read(A, B);
    //     print(A + T * B);
    // }
    return 0;
}
0