結果

問題 No.435 占い(Extra)
ユーザー pekempey
提出日時 2016-10-15 00:15:11
言語 C++11(廃止可能性あり)
(gcc 13.3.0)
結果
TLE  
実行時間 -
コード長 3,115 bytes
コンパイル時間 1,692 ms
コンパイル使用メモリ 180,488 KB
実行使用メモリ 13,636 KB
最終ジャッジ日時 2024-10-08 11:56:45
合計ジャッジ時間 17,227 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 14 TLE * 3 -- * 15
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:135:22: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  135 |                 scanf("%lld %lld %lld %lld %lld", &n, &x, &a, &b, &m);
      |                 ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;

pair<long long, long long> extgcd(long long a, long long b) {
	if (b == 0) return{ 1, 0 };
	long long x, y;
	tie(x, y) = extgcd(b, a % b);
	return{ y, x - a / b * y };
}

long long modpow(long long a, long long b, long long mod) {
	if (b == 0) return 1;
	return modpow(a * a % mod, b / 2, mod) * (b & 1 ? a : 1) % mod;
}

long long modulo(long long a, long long mod) {
	return (a % mod + mod) % mod;
}

long long modinv(long long a, long long mod) {
	return modulo(extgcd(a, mod).first, mod);
}

map<long long, long long> prime_factors(long long n) {
	map<long long, long long> ret;
	for (long long i = 2; i * i <= n; i++)
		while (n % i == 0) ret[i]++, n /= i;
	if (n != 1) ret[n]++;
	return ret;
}

struct Combination {
	struct CombinationLucas {
		long long p, q;
		long long mod;
		vector<long long> power;
		vector<long long> F, invF;
		vector<int> e;

		CombinationLucas(int n, long long p, long long q)
			: p(p), q(q), F(n), invF(n), e(n), power(q + 1) {
			mod = 1;
			for (int i = 0; i < q; i++) {
				mod *= p;
			}

			power[0] = 1;
			for (int i = 1; i <= q; i++) {
				power[i] = power[i - 1] * p % mod;
			}

			F[0] = 1;
			for (long long i = 1; i < n; i++) {
				if (i % p == 0) {
					F[i] = F[i - 1];
				} else {
					F[i] = F[i - 1] * i % mod;
				}
			}

			invF[n - 1] = modinv(F[n - 1], mod);
			for (long long i = n - 2; i >= 0; i--) {
				if ((i + 1) % p == 0) {
					invF[i] = invF[i + 1];
				} else {
					invF[i] = invF[i + 1] * (i + 1) % mod;
				}
			}
		}

		long long count(int n) {
			int res = 0;
			n /= p;
			while (n > 0) res += n, n /= p;
			return res;
		}

		long long FF(int n) {
			if (n == 0) return 1;
			return F[n % (2 * mod)] * FF(n / p) % mod;
		}

		long long invFF(int n) {
			if (n == 0) return 1;
			return invF[n % (2 * mod)] * invFF(n / p) % mod;
		}

		long long operator()(int n, int r) {
			if (n < 0 || r < 0 || n < r) return 0;
			long long result = FF(n) * invFF(n - r) % mod * invFF(r) % mod;
			result = result * modpow(p, min<long long>(q, count(n) - count(r) - count(n - r)), mod) % mod;
			return result;
		}
	};

	vector<long long> inv;
	vector<CombinationLucas> cs;

	Combination(int n, long long mod) {
		auto pf = prime_factors(mod);
		for (auto kv : pf) {
			cs.emplace_back(n, kv.first, kv.second);
		}

		long long m = 1;
		for (auto &c : cs) {
			inv.push_back(modinv(m, c.mod));
			m *= c.mod;
		}
	}

	long long operator()(int n, int r) {
		long long x = 0;
		long long mod = 1;

		for (int i = 0; i < cs.size(); i++) {
			long long y = cs[i](n, r);
			x += mod * (y - x) * inv[i];
			mod *= cs[i].mod;
			x %= mod;
		}

		return (x % mod + mod) % mod;
	}
};

int main() {
	int T;
	cin >> T;

	Combination cb(100, 9);

	while (T--) {
		long long n, x, a, b, m;
		scanf("%lld %lld %lld %lld %lld", &n, &x, &a, &b, &m);

		bool zero = true;

		n--;

		long long ans = 0;
		for (int i = 0; i <= n; i++) {
			if (x % 10 != 0) zero = false;
			(ans += cb(n, i) * (x % 10)) %= 9;
			x = ((x ^ a) + b) % m;
		}
		ans %= 9;
		if (ans == 0) ans = 9;
		if (zero) ans = 0;
		printf("%lld\n", ans);
	}
}
0