結果
問題 | No.435 占い(Extra) |
ユーザー | pekempey |
提出日時 | 2016-10-15 00:15:11 |
言語 | C++11 (gcc 13.3.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 3,115 bytes |
コンパイル時間 | 1,692 ms |
コンパイル使用メモリ | 180,488 KB |
実行使用メモリ | 13,636 KB |
最終ジャッジ日時 | 2024-10-08 11:56:45 |
合計ジャッジ時間 | 17,227 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
13,636 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 1 ms
6,820 KB |
testcase_03 | AC | 1 ms
6,816 KB |
testcase_04 | AC | 1 ms
6,816 KB |
testcase_05 | AC | 1 ms
6,820 KB |
testcase_06 | AC | 2 ms
6,816 KB |
testcase_07 | AC | 2 ms
6,816 KB |
testcase_08 | AC | 16 ms
6,816 KB |
testcase_09 | AC | 12 ms
6,820 KB |
testcase_10 | AC | 175 ms
6,816 KB |
testcase_11 | AC | 143 ms
6,820 KB |
testcase_12 | TLE | - |
testcase_13 | AC | 1,711 ms
6,816 KB |
testcase_14 | AC | 1,394 ms
6,816 KB |
testcase_15 | AC | 1,062 ms
6,816 KB |
testcase_16 | AC | 738 ms
6,820 KB |
testcase_17 | AC | 460 ms
6,816 KB |
testcase_18 | TLE | - |
testcase_19 | AC | 1,717 ms
6,816 KB |
testcase_20 | TLE | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
コンパイルメッセージ
main.cpp: In function ‘int main()’: main.cpp:135:22: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 135 | scanf("%lld %lld %lld %lld %lld", &n, &x, &a, &b, &m); | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ソースコード
#include <bits/stdc++.h> using namespace std; pair<long long, long long> extgcd(long long a, long long b) { if (b == 0) return{ 1, 0 }; long long x, y; tie(x, y) = extgcd(b, a % b); return{ y, x - a / b * y }; } long long modpow(long long a, long long b, long long mod) { if (b == 0) return 1; return modpow(a * a % mod, b / 2, mod) * (b & 1 ? a : 1) % mod; } long long modulo(long long a, long long mod) { return (a % mod + mod) % mod; } long long modinv(long long a, long long mod) { return modulo(extgcd(a, mod).first, mod); } map<long long, long long> prime_factors(long long n) { map<long long, long long> ret; for (long long i = 2; i * i <= n; i++) while (n % i == 0) ret[i]++, n /= i; if (n != 1) ret[n]++; return ret; } struct Combination { struct CombinationLucas { long long p, q; long long mod; vector<long long> power; vector<long long> F, invF; vector<int> e; CombinationLucas(int n, long long p, long long q) : p(p), q(q), F(n), invF(n), e(n), power(q + 1) { mod = 1; for (int i = 0; i < q; i++) { mod *= p; } power[0] = 1; for (int i = 1; i <= q; i++) { power[i] = power[i - 1] * p % mod; } F[0] = 1; for (long long i = 1; i < n; i++) { if (i % p == 0) { F[i] = F[i - 1]; } else { F[i] = F[i - 1] * i % mod; } } invF[n - 1] = modinv(F[n - 1], mod); for (long long i = n - 2; i >= 0; i--) { if ((i + 1) % p == 0) { invF[i] = invF[i + 1]; } else { invF[i] = invF[i + 1] * (i + 1) % mod; } } } long long count(int n) { int res = 0; n /= p; while (n > 0) res += n, n /= p; return res; } long long FF(int n) { if (n == 0) return 1; return F[n % (2 * mod)] * FF(n / p) % mod; } long long invFF(int n) { if (n == 0) return 1; return invF[n % (2 * mod)] * invFF(n / p) % mod; } long long operator()(int n, int r) { if (n < 0 || r < 0 || n < r) return 0; long long result = FF(n) * invFF(n - r) % mod * invFF(r) % mod; result = result * modpow(p, min<long long>(q, count(n) - count(r) - count(n - r)), mod) % mod; return result; } }; vector<long long> inv; vector<CombinationLucas> cs; Combination(int n, long long mod) { auto pf = prime_factors(mod); for (auto kv : pf) { cs.emplace_back(n, kv.first, kv.second); } long long m = 1; for (auto &c : cs) { inv.push_back(modinv(m, c.mod)); m *= c.mod; } } long long operator()(int n, int r) { long long x = 0; long long mod = 1; for (int i = 0; i < cs.size(); i++) { long long y = cs[i](n, r); x += mod * (y - x) * inv[i]; mod *= cs[i].mod; x %= mod; } return (x % mod + mod) % mod; } }; int main() { int T; cin >> T; Combination cb(100, 9); while (T--) { long long n, x, a, b, m; scanf("%lld %lld %lld %lld %lld", &n, &x, &a, &b, &m); bool zero = true; n--; long long ans = 0; for (int i = 0; i <= n; i++) { if (x % 10 != 0) zero = false; (ans += cb(n, i) * (x % 10)) %= 9; x = ((x ^ a) + b) % m; } ans %= 9; if (ans == 0) ans = 9; if (zero) ans = 0; printf("%lld\n", ans); } }