結果

問題 No.470 Inverse S+T Problem
ユーザー sekiya9311sekiya9311
提出日時 2017-03-04 10:46:44
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 5,909 bytes
コンパイル時間 1,425 ms
コンパイル使用メモリ 128,532 KB
実行使用メモリ 62,120 KB
最終ジャッジ日時 2024-06-01 22:49:37
合計ジャッジ時間 4,922 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 3 ms
13,756 KB
testcase_01 AC 3 ms
6,940 KB
testcase_02 AC 3 ms
6,940 KB
testcase_03 AC 3 ms
6,940 KB
testcase_04 AC 3 ms
6,940 KB
testcase_05 AC 4 ms
6,940 KB
testcase_06 TLE -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <iostream>
#include <string>
#include <queue>
#include <stack>
#include <algorithm>
#include <list>
#include <vector>
#include <complex>
#include <utility>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <climits>
#include <bitset>
#include <ctime>
#include <map>
#include <unordered_map>
#include <set>
#include <unordered_set>
#include <cassert>
#include <cstddef>
#include <iomanip>
#include <numeric>
#include <tuple>
#include <sstream>
#include <fstream>
#include <chrono>

using namespace std;
#define REP(i, n) for (int (i) = 0; (i) < (n); (i)++)
#define FOR(i, a, b) for (int (i) = (a); (i) < (b); (i)++)
#define RREP(i, a) for(int (i) = (a) - 1; (i) >= 0; (i)--)
#define FORR(i, a, b) for(int (i) = (a) - 1; (i) >= (b); (i)--)
#define DEBUG(C) cerr << #C << " = " << C << endl;
using LL = long long;
using VI = vector<int>;
using VVI = vector<VI>;
using VL = vector<LL>;
using VVL = vector<VL>;
using VD = vector<double>;
using VVD = vector<VD>;
using PII = pair<int, int>;
using PDD = pair<double, double>;
using PLL = pair<LL, LL>;
using VPII = vector<PII>;
template<typename T> using VT = vector<T>;
#define ALL(a) begin((a)), end((a))
#define RALL(a) rbegin((a)), rend((a))
#define SORT(a) sort(ALL((a)))
#define RSORT(a) sort(RALL((a)))
#define REVERSE(a) reverse(ALL((a)))
#define MP make_pair
#define FORE(a, b) for (auto &&a : (b))
#define FIND(s, e) ((s).find(e) != (s).end())
#define EB emplace_back
template<typename T> inline bool chmax(T &a, T b){if (a < b){a = b;return true;}return false;}
template<typename T> inline bool chmin(T &a, T b){if (a > b){a = b;return true;}return false;}

const int INF = 1e9;
const int MOD = INF + 7;
const LL LLINF = 1e18;
const long double EPS = 1e-9;

class StronglyConnectedComponentDecomposition {
private:
    std::vector<bool> used;
    std::vector<std::vector<int>> graph, revgraph;
    std::vector<int> comp;
    std::vector<int> sortNode;

    void dfs(int now) {
        this->used[now] = true;
        for (const int e : this->graph[now]) {
            if (!this->used[e]) dfs(e);
        }
        this->sortNode.emplace_back(now);
        return;
    }
    void dfs2(int now, int cnt) {
        this->used[now] = true;
        for (const int e : this->revgraph[now]) {
            if (!this->used[e]) dfs2(e, cnt);
        }
        this->comp[now] = cnt;
        return;
    }
public:
    StronglyConnectedComponentDecomposition() {}
    StronglyConnectedComponentDecomposition(const int n) : used(n, false), graph(n), revgraph(n), comp(n, 0) {}
    void resize(const int n) {
         this->used.resize(n, false);
         this->graph.resize(n);
         this->revgraph.resize(n);
         this->comp.resize(n, 0);
    }
    void addEdge(const int from, const int to) {
        this->graph[from].emplace_back(to);
        this->revgraph[to].emplace_back(from);
        return;
    }
    int solve() {
        std::fill(std::begin(this->used), std::end(this->used), false);
        for (int i = 0; i < (int)this->used.size(); i++) {
            if (!used[i]) dfs(i);
        }
        std::fill(std::begin(this->used), std::end(this->used), false);
        std::reverse(std::begin(this->sortNode), std::end(this->sortNode));
        int res = 0;
        for (const int n : this->sortNode) {
            if (!this->used[n]) dfs2(n, res++);
        }
        return res;
    }
    std::vector<int> getComp() {
        return this->comp;
    }
    bool same(const int a, const int b) {
        return this->comp[a] == this->comp[b];
    }
    int operator[](const int n) {
        return comp[n];
    }
};
// need SCC Library!!!!
class Two_Sat {
private:
    StronglyConnectedComponentDecomposition scc;
    int sz;
public:
    Two_Sat(const int n) : scc(n * 2), sz(n) {}
    Two_Sat() {}
    // add (a OR b)
    void addLogic(const int a, const bool ab, const int b, const bool bb) {
        this->scc.addEdge(a + (ab ? 0 : this->sz), b + (bb ? this->sz : 0));
        this->scc.addEdge(b + (bb ? 0 : this->sz), a + (ab ? this->sz : 0));
    }
    // (logic 1) AND (logic 2) AND ... (logic N) <- satisfy
    bool calcSatisfy() {
        this->scc.solve();
        for (int i = 0; i < this->sz; i++) {
            if (this->scc.same(i, i + this->sz)) return false;
        }
        return true;
    }
    bool operator[](const int n) {
        return this->scc[n] > this->scc[n + sz];
    }
};

const int MAX = 1e5 + 10;
char strbuf[MAX];
string next() {
    scanf("%s", strbuf);
    return strbuf;
}
int N;
string S[MAX];

int main(void) {
    int cnt = 0;
    scanf("%d", &N);
    for (int i = 0; i < N; ++i) {
        S[i] = next();        
    }
    Two_Sat ts(N);
    for (int i = 0; i < N; ++i) {
        for (int j = i + 1; j < N; ++j) {
            if (S[i].substr(0, 1) == S[j].substr(0, 1) || S[i].substr(1, 2) == S[j].substr(1, 2)) {
                ts.addLogic(i, true, j, true);
            }
            if (S[i].substr(0, 1) == S[j].substr(2, 1) || S[i].substr(1, 2) == S[j].substr(0, 2)) {
                ts.addLogic(i, true, j, false);
            }
            if (S[i].substr(2, 1) == S[j].substr(0, 1) || S[i].substr(0, 2) == S[j].substr(1, 2)) {
                ts.addLogic(i, false, j, true);
            }
            if (S[i].substr(2, 1) == S[j].substr(2, 1) || S[i].substr(0, 2) == S[j].substr(0, 2)) {
                ts.addLogic(i, false, j, false);
            }
        }
    }
    if (!ts.calcSatisfy()) {
        puts("Impossible");
        return 0;
    }
    for (int i = 0; i < N; ++i) {
        if (ts[i]) {
            for (int j = 0; j < 3; ++j) {
                putchar(S[i][j]);
                if (j == 0) putchar(' ');
            }
            putchar('\n');
        } else {
            for (int j = 0; j < 3; ++j) {
                putchar(S[i][j]);
                if (j == 1) putchar(' ');
            }
            putchar('\n');
        }
    }
}
0