結果
問題 | No.502 階乗を計算するだけ |
ユーザー | uwi |
提出日時 | 2017-04-08 15:50:35 |
言語 | Java21 (openjdk 21) |
結果 |
TLE
|
実行時間 | - |
コード長 | 18,414 bytes |
コンパイル時間 | 5,203 ms |
コンパイル使用メモリ | 90,552 KB |
実行使用メモリ | 77,792 KB |
最終ジャッジ日時 | 2024-07-17 23:49:49 |
合計ジャッジ時間 | 15,192 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 51 ms
52,568 KB |
testcase_01 | AC | 78 ms
56,108 KB |
testcase_02 | AC | 89 ms
57,024 KB |
testcase_03 | AC | 81 ms
55,896 KB |
testcase_04 | AC | 76 ms
56,320 KB |
testcase_05 | AC | 78 ms
56,564 KB |
testcase_06 | AC | 79 ms
56,264 KB |
testcase_07 | AC | 72 ms
55,916 KB |
testcase_08 | AC | 73 ms
56,892 KB |
testcase_09 | AC | 90 ms
56,804 KB |
testcase_10 | AC | 74 ms
56,224 KB |
testcase_11 | AC | 86 ms
56,796 KB |
testcase_12 | AC | 85 ms
56,964 KB |
testcase_13 | AC | 89 ms
56,936 KB |
testcase_14 | AC | 73 ms
56,020 KB |
testcase_15 | AC | 70 ms
56,160 KB |
testcase_16 | AC | 80 ms
56,072 KB |
testcase_17 | AC | 79 ms
56,016 KB |
testcase_18 | AC | 89 ms
56,992 KB |
testcase_19 | AC | 75 ms
56,248 KB |
testcase_20 | AC | 86 ms
56,596 KB |
testcase_21 | AC | 65 ms
56,076 KB |
testcase_22 | AC | 140 ms
56,884 KB |
testcase_23 | AC | 106 ms
56,976 KB |
testcase_24 | AC | 141 ms
58,900 KB |
testcase_25 | AC | 107 ms
57,472 KB |
testcase_26 | AC | 119 ms
57,232 KB |
testcase_27 | AC | 104 ms
57,856 KB |
testcase_28 | AC | 122 ms
56,836 KB |
testcase_29 | AC | 116 ms
57,720 KB |
testcase_30 | AC | 155 ms
58,936 KB |
testcase_31 | AC | 126 ms
58,792 KB |
testcase_32 | TLE | - |
testcase_33 | WA | - |
testcase_34 | TLE | - |
testcase_35 | TLE | - |
testcase_36 | TLE | - |
testcase_37 | TLE | - |
testcase_38 | WA | - |
testcase_39 | TLE | - |
testcase_40 | AC | 979 ms
70,188 KB |
testcase_41 | AC | 71 ms
56,012 KB |
testcase_42 | AC | 51 ms
52,584 KB |
testcase_43 | AC | 50 ms
52,508 KB |
testcase_44 | AC | 52 ms
52,336 KB |
testcase_45 | AC | 50 ms
52,628 KB |
testcase_46 | AC | 50 ms
52,488 KB |
testcase_47 | AC | 52 ms
52,704 KB |
testcase_48 | AC | 50 ms
52,556 KB |
testcase_49 | AC | 52 ms
52,300 KB |
testcase_50 | AC | 51 ms
52,568 KB |
testcase_51 | AC | 52 ms
52,524 KB |
ソースコード
package contest; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; public class Factorial { InputStream is; PrintWriter out; String INPUT = ""; void solve() { int mod = 1000000007; long nlong = nl(); if(nlong >= mod){ out.println(0); return; } if(nlong == 0){ out.println(1); return; } superPrepare(); int n = (int)nlong; boolean inv = false; if(n > mod-n){ n = mod - n; inv = true; } int s = (int)Math.sqrt(n); long[] vs = new long[n/s]; for(int i = 0;i < n/s;i++){ vs[i] = 1 + i * s; } long[] f = buildProductPlus(vs); long[] cs = new long[s]; for(int i = 0;i < s;i++)cs[i] = i; long[] res = substitute(f, cs); long ret = 1; for(long v : res)ret = ret * v % mod; for(int i = s*(n/s)+1;i <= n;i++){ ret = ret * i % mod; } if(inv){ ret = mod-invl(ret, mod); } out.println(ret); } public static long[] buildProductPlus(long[] vs) { return dfsBPP(0, vs.length, vs); } private static long[] dfsBPP(int l, int r, long[] vs) { if(r-l == 1){ return new long[]{vs[l], 1}; }else{ int h = l+r>>1; return mul(dfsBPP(l, h, vs), dfsBPP(h, r, vs)); } } public static int mod = 1000000007; public static long[] mul(long[] a, long[] b) { if(Math.max(a.length, b.length) >= 1500){ return Arrays.copyOf(convolute3(a, b, mod, null), a.length+b.length-1); }else{ return mulnaive(a, b); } } public static long[] mul(long[] a, long[] b, int lim) { if(Math.max(a.length, b.length) >= 1500){ return Arrays.copyOf(convolute3(a, b, mod, null), lim); }else{ return mulnaive(a, b, lim); } } public static long[] mulnaive(long[] a, long[] b) { long[] c = new long[a.length+b.length-1]; long big = 8L*mod*mod; for(int i = 0;i < a.length;i++){ for(int j = 0;j < b.length;j++){ c[i+j] += a[i]*b[j]; if(c[i+j] >= big)c[i+j] -= big; } } for(int i = 0;i < c.length;i++)c[i] %= mod; return c; } public static long[] mulnaive(long[] a, long[] b, int lim) { long[] c = new long[lim]; long big = 8L*mod*mod; for(int i = 0;i < a.length;i++){ for(int j = 0;j < b.length && i+j < lim;j++){ c[i+j] += a[i]*b[j]; if(c[i+j] >= big)c[i+j] -= big; } } for(int i = 0;i < c.length;i++)c[i] %= mod; return c; } public static long[] add(long[] a, long[] b) { long[] c = new long[Math.max(a.length, b.length)]; for(int i = 0;i < a.length;i++)c[i] += a[i]; for(int i = 0;i < b.length;i++)c[i] += b[i]; for(int i = 0;i < c.length;i++)if(c[i] >= mod)c[i] -= mod; return c; } public static long[] add(long[] a, long[] b, int lim) { long[] c = new long[lim]; for(int i = 0;i < a.length && i < lim;i++)c[i] += a[i]; for(int i = 0;i < b.length && i < lim;i++)c[i] += b[i]; for(int i = 0;i < c.length;i++)if(c[i] >= mod)c[i] -= mod; return c; } public static long[] sub(long[] a, long[] b) { long[] c = new long[Math.max(a.length, b.length)]; for(int i = 0;i < a.length;i++)c[i] += a[i]; for(int i = 0;i < b.length;i++)c[i] -= b[i]; for(int i = 0;i < c.length;i++)if(c[i] < 0)c[i] += mod; return c; } public static long[] sub(long[] a, long[] b, int lim) { long[] c = new long[lim]; for(int i = 0;i < a.length && i < lim;i++)c[i] += a[i]; for(int i = 0;i < b.length && i < lim;i++)c[i] -= b[i]; for(int i = 0;i < c.length;i++)if(c[i] < 0)c[i] += mod; return c; } // F_{t+1}(x) = -F_t(x)^2*P(x) + 2F_t(x) // if want p-destructive, comment out flipping p just before returning. public static long[] inv(long[] p) { int n = p.length; long[] f = {invl(p[0], mod)}; for(int i = 0;i < p.length;i++){ if(p[i] == 0)continue; p[i] = mod-p[i]; } for(int i = 1;i < 2*n;i*=2){ long[] f2 = mul(f, f, Math.min(n, 2*i)); long[] f2p = mul(f2, Arrays.copyOf(p, i), Math.min(n, 2*i)); for(int j = 0;j < f.length;j++){ f2p[j] += 2L*f[j]; if(f2p[j] >= mod)f2p[j] -= mod; if(f2p[j] >= mod)f2p[j] -= mod; } f = f2p; } for(int i = 0;i < p.length;i++){ if(p[i] == 0)continue; p[i] = mod-p[i]; } return f; } // differentiate public static long[] d(long[] p) { long[] q = new long[p.length]; for(int i = 0;i < p.length-1;i++){ q[i] = p[i+1] * (i+1) % mod; } return q; } // integrate public static long[] i(long[] p) { long[] q = new long[p.length]; for(int i = 0;i < p.length-1;i++){ q[i+1] = p[i] * invl(i+1, mod) % mod; } return q; } // F_{t+1}(x) = F_t(x)-(ln F_t(x) - P(x)) * F_t(x) public static long[] exp(long[] p) { int n = p.length; long[] f = {p[0]}; for(int i = 1;i < 2*n;i*=2){ long[] ii = ln(f); long[] sub = sub(ii, p, Math.min(n, 2*i)); if(--sub[0] < 0)sub[0] += mod; for(int j = 0;j < 2*i && j < n;j++){ sub[j] = mod-sub[j]; if(sub[j] == mod)sub[j] = 0; } f = mul(sub, f, Math.min(n, 2*i)); // f = sub(f, mul(sub(ii, p, 2*i), f, 2*i)); } return f; } // \int f'(x)/f(x) dx public static long[] ln(long[] f) { long[] ret = i(mul(d(f), inv(f))); ret[0] = f[0]; return ret; } // destructive public static long[] divf(long[] a, int[][] fif) { for(int i = 0;i < a.length;i++)a[i] = a[i] * fif[1][i] % mod; return a; } // destructive public static long[] mulf(long[] a, int[][] fif) { for(int i = 0;i < a.length;i++)a[i] = a[i] * fif[0][i] % mod; return a; } public static long[] transformExponentially(long[] a, int[][] fif) { return mulf(exp(divf(Arrays.copyOf(a, a.length), fif)), fif); } public static long[] transformLogarithmically(long[] a, int[][] fif) { return mulf(Arrays.copyOf(ln(divf(Arrays.copyOf(a, a.length), fif)), a.length), fif); } public static long pow(long a, long n, long mod) { // a %= mod; long ret = 1; int x = 63 - Long.numberOfLeadingZeros(n); for (; x >= 0; x--) { ret = ret * ret % mod; if (n << 63 - x < 0) ret = ret * a % mod; } return ret; } public static long invl(long a, long mod) { long b = mod; long p = 1, q = 0; while (b > 0) { long c = a / b; long d; d = a; a = b; b = d % b; d = p; p = q; q = d - c * q; } return p < 0 ? p + mod : p; } public static long[] reverse(long[] p) { long[] ret = new long[p.length]; for(int i = 0;i < p.length;i++){ ret[i] = p[p.length-1-i]; } return ret; } public static long[] reverse(long[] p, int lim) { long[] ret = new long[lim]; for(int i = 0;i < lim && i < p.length;i++){ ret[i] = p[p.length-1-i]; } return ret; } // [quotient, remainder] // remainder can be empty. // @see http://www.dis.uniroma1.it/~sankowski/lecture4.pdf public static long[][] div(long[] p, long[] q) { if(p.length < q.length)return new long[][]{new long[0], Arrays.copyOf(p, p.length)}; long[] rp = reverse(p, p.length-q.length+1); long[] rq = reverse(q, p.length-q.length+1); long[] rd = mul(rp, inv(rq), p.length-q.length+1); long[] d = reverse(rd, p.length-q.length+1); long[] r = sub(p, mul(d, q, q.length-1), q.length-1); return new long[][]{d, r}; } public static long[] substitute(long[] p, long[] xs) { return descendProductTree(p, buildProductTree(xs)); } public static long[][] buildProductTree(long[] xs) { int m = Integer.highestOneBit(xs.length)*4; long[][] ms = new long[m][]; for(int i = 0;i < xs.length;i++){ ms[m/2+i] = new long[]{mod-xs[i], 1}; } for(int i = m/2-1;i >= 1;i--){ if(ms[2*i] == null){ ms[i] = null; }else if(ms[2*i+1] == null){ ms[i] = ms[2*i]; }else{ ms[i] = mul(ms[2*i], ms[2*i+1]); } } return ms; } public static long[] descendProductTree(long[] p, long[][] pt) { long[] rets = new long[pt[1].length-1]; dfs(p, pt, 1, rets); return rets; } private static void dfs(long[] p, long[][] pt, int cur, long[] rets) { if(pt[cur] == null)return; if(cur >= pt.length/2){ rets[cur-pt.length/2] = p[0]; }else{ // F = q1X+r1 // F = q2Y+r2 if(p.length >= 200){ if(pt[2*cur+1] != null){ long[][] qr0 = div(p, pt[2*cur]); dfs(qr0[1], pt, cur*2, rets); long[][] qr1 = div(p, pt[2*cur+1]); dfs(qr1[1], pt, cur*2+1, rets); }else if(pt[2*cur] != null){ long[] nex = cur == 1 ? div(p, pt[2*cur])[1] : p; dfs(nex, pt, cur*2, rets); } }else{ if(pt[2*cur+1] != null){ dfs(modnaive(p, pt[2*cur]), pt, cur*2, rets); dfs(modnaive(p, pt[2*cur+1]), pt, cur*2+1, rets); }else if(pt[2*cur] != null){ long[] nex = cur == 1 ? modnaive(p, pt[2*cur]) : p; dfs(nex, pt, cur*2, rets); } } } } public static long[][] divnaive(long[] a, long[] b) { int n = a.length, m = b.length; if(n-m+1 <= 0)return new long[][]{new long[0], Arrays.copyOf(a, n)}; long[] r = Arrays.copyOf(a, n); long[] q = new long[n-m+1]; long ib = invl(b[m-1], mod); for(int i = n-1;i >= m-1;i--){ long x = ib * r[i] % mod; q[i-(m-1)] = x; for(int j = m-1;j >= 0;j--){ r[i+j-(m-1)] -= b[j]*x; r[i+j-(m-1)] %= mod; if(r[i+j-(m-1)] < 0)r[i+j-(m-1)] += mod; // r[i+j-(m-1)] = modh(r[i+j-(m-1)]+(long)mod*mod - b[j]*x, MM, HH, mod); } } return new long[][]{q, Arrays.copyOf(r, m-1)}; } public static final int[] NTTPrimes = {1053818881, 1051721729, 1045430273, 1012924417, 1007681537, 1004535809, 998244353, 985661441, 976224257, 975175681}; public static final int[] NTTPrimitiveRoots = {7, 6, 3, 5, 3, 3, 3, 3, 3, 17}; // public static long[] convolute(long[] a, long[] b) // { // int USE = 2; // int m = Math.max(2, Integer.highestOneBit(a.length-1)<<2); // long[][] fs = new long[USE][]; // for(int k = 0;k < USE;k++){ // int P = NTTPrimes[k], g = NTTPrimitiveRoots[k]; // long[] fa = nttmb(a, m, false, P, g); // long[] fb = a == b ? fa : nttmb(b, m, false, P, g); // for(int i = 0;i < m;i++){ // fa[i] = fa[i]*fb[i]%P; // } // fs[k] = nttmb(fa, m, true, P, g); // } // // int[] mods = Arrays.copyOf(NTTPrimes, USE); // long[] gammas = garnerPrepare(mods); // int[] buf = new int[USE]; // for(int i = 0;i < fs[0].length;i++){ // for(int j = 0;j < USE;j++)buf[j] = (int)fs[j][i]; // long[] res = garnerBatch(buf, mods, gammas); // long ret = 0; // for(int j = res.length-1;j >= 0;j--)ret = ret * mods[j] + res[j]; // fs[0][i] = ret; // } // return fs[0]; // } static int L = 16; // max m = 2^L static long[][] cache = new long[6][1<<L]; // using cache, optimize memory. public static long[] convolute3(long[] a, long[] b, int mod, long[][] ffb) { int m = ffb != null ? ffb[0].length : Math.max(2, Integer.highestOneBit(a.length+b.length-1)<<1); long[][] fs = new long[3][]; for(int k = 0;k < 3;k++){ int P = NTTPrimes[k]; long[] fa = nttmb(a, m, false, cache[k*2], k); long[] fb = ffb != null ? ffb[k] : a == b ? fa : nttmb(b, m, false, cache[k*2+1], k); for(int i = 0;i < m;i++){ fa[i] = fa[i]*fb[i]%P; } fs[k] = nttmb(fa, m, true, k); } // mods={1053818881, 1051721729, 1045430273 // gamma=[[0, 525860363, 152479290]] long F = 1051721729L * 1053818881L % mod; long[] res = new long[a.length+b.length-1]; for(int i = 0;i < res.length;i++){ long v0 = fs[0][i]; long v1 = (fs[1][i] - v0 + 1051721729L + 1051721729L) * 525860363L % 1051721729L; long v2 = ((fs[2][i] - v0 + 1045430273L) * 152479290L + v1 * (1045430273L-871191728L)) % 1045430273L; long ret = (v2 * F + v1 * 1053818881L + v0) % mod; res[i] = ret; } return res; } // if m is not max size, not using cache will be faster. public static long[] convolute3NoCache(long[] a, long[] b, int mod, long[][] ffb) { int m = ffb != null ? ffb[0].length : Math.max(2, Integer.highestOneBit(a.length+b.length-1)<<1); long[][] fs = new long[3][]; for(int k = 0;k < 3;k++){ int P = NTTPrimes[k]; long[] fa = nttmb(a, m, false, null, k); long[] fb = ffb != null ? ffb[k] : a == b ? fa : nttmb(b, m, false, null, k); for(int i = 0;i < m;i++){ fa[i] = fa[i]*fb[i]%P; } fs[k] = nttmb(fa, m, true, k); } // mods={1053818881, 1051721729, 1045430273 // gamma=[[0, 525860363, 152479290]] long F = 1051721729L * 1053818881L % mod; long[] res = new long[a.length+b.length-1]; for(int i = 0;i < res.length;i++){ long v0 = fs[0][i]; long v1 = (fs[1][i] - v0 + 1051721729L + 1051721729L) * 525860363L % 1051721729L; long v2 = ((fs[2][i] - v0 + 1045430273L) * 152479290L + v1 * (1045430273L-871191728L)) % 1045430273L; long ret = (v2 * F + v1 * 1053818881L + v0) % mod; res[i] = ret; } return res; } static int[][][] wws; static int[][][] iwws; static void superPrepare() { wws = new int[3][][]; iwws = new int[3][][]; for(int t = 0;t < 3;t++){ int P = NTTPrimes[t], g = NTTPrimitiveRoots[t]; long K = Integer.highestOneBit(P)<<1; int H = Long.numberOfTrailingZeros(K)*2; long M = K*K/P; { wws[t] = new int[L+1][]; long w = (1L<<32)%P; long dw = pow(g, P-1>>>L, P); wws[t][L] = new int[1<<L-1]; for(int k = 0;k < 1<<L-1;k++){ wws[t][L][k] = (int)w; w = modh(w*dw, M, H, P); } for(int i = L-1;i >= 1;i--){ wws[t][i] = new int[1<<i-1]; for(int k = 0;k < 1<<i-1;k++)wws[t][i][k] = wws[t][i+1][k*2]; } } { iwws[t] = new int[L+1][]; long w = (1L<<32)%P; long dw = pow(g, P-1-(P-1>>>L), P); iwws[t][L] = new int[1<<L-1]; for(int k = 0;k < 1<<L-1;k++){ iwws[t][L][k] = (int)w; w = modh(w*dw, M, H, P); } for(int i = L-1;i >= 1;i--){ iwws[t][i] = new int[1<<i-1]; for(int k = 0;k < 1<<i-1;k++)iwws[t][i][k] = iwws[t][i+1][k*2]; } } } } private static long[] nttmb(long[] src, int n, boolean inverse, int ind){ return nttmb(src, n, inverse, new long[n], ind); } // Modifed Montgomery + Barrett private static long[] nttmb(long[] src, int n, boolean inverse, long[] dst, int ind) { int P = NTTPrimes[ind]; System.arraycopy(src, 0, dst, 0, Math.min(n, src.length)); Arrays.fill(dst, Math.min(n, src.length), n, 0); int h = Integer.numberOfTrailingZeros(n); long J = invl(P, 1L<<32); int[][] mul = inverse ? iwws[ind] : wws[ind]; for(int i = 0;i < h;i++){ for(int j = 0;j < 1<<i;j++){ for(int k = 0, s = j<<h-i, t = s|1<<h-i-1;k < 1<<h-i-1;k++,s++,t++){ long u = (dst[s] - dst[t] + 2*P)*mul[h-i][k]; dst[s] += dst[t]; if(dst[s] >= 2*P)dst[s] -= 2*P; // long Q = (u&(1L<<32)-1)*J&(1L<<32)-1; long Q = (u<<32)*J>>>32; dst[t] = (u>>>32)-(Q*P>>>32)+P; } } } for(int i = 0;i < n;i++){ if(dst[i] >= P)dst[i] -= P; } for(int i = 0;i < n;i++){ int rev = Integer.reverse(i)>>>-h; if(i < rev){ long d = dst[i]; dst[i] = dst[rev]; dst[rev] = d; } } if(inverse){ long K = Integer.highestOneBit(P)<<1; int H = Long.numberOfTrailingZeros(K)*2; long M = K*K/P; long in = invl(n, P); for(int i = 0;i < n;i++)dst[i] = modh(dst[i]*in, M, H, P); } return dst; } static final long mask = (1L<<31)-1; public static long modh(long a, long M, int h, int mod) { long r = a-((M*(a&mask)>>>31)+M*(a>>>31)>>>h-31)*mod; return r < mod ? r : r-mod; } public static long[] modnaive(long[] a, long[] b) { int n = a.length, m = b.length; if(n-m+1 <= 0)return a; long[] r = Arrays.copyOf(a, n); long ib = invl(b[m-1], mod); for(int i = n-1;i >= m-1;i--){ long x = ib * r[i] % mod; for(int j = m-1;j >= 0;j--){ r[i+j-(m-1)] -= b[j]*x; r[i+j-(m-1)] %= mod; if(r[i+j-(m-1)] < 0)r[i+j-(m-1)] += mod; // r[i+j-(m-1)] = modh(r[i+j-(m-1)]+(long)mod*mod - b[j]*x, MM, HH, mod); } } return Arrays.copyOf(r, m-1); } void run() throws Exception { is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms"); // Thread t = new Thread(null, null, "~", Runtime.getRuntime().maxMemory()){ // @Override // public void run() { // long s = System.currentTimeMillis(); // solve(); // out.flush(); // if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms"); // } // }; // t.start(); // t.join(); } public static void main(String[] args) throws Exception { new Factorial().run(); } private byte[] inbuf = new byte[1024]; private int lenbuf = 0, ptrbuf = 0; private int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char)skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private long[] nal(int n) { long[] a = new long[n]; for(int i = 0;i < n;i++)a[i] = nl(); return a; } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private int[][] nmi(int n, int m) { int[][] map = new int[n][]; for(int i = 0;i < n;i++)map[i] = na(m); return map; } private int ni() { return (int)nl(); } private long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private static void tr(Object... o) { System.out.println(Arrays.deepToString(o)); } }