結果
| 問題 |
No.510 二次漸化式
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2017-07-15 02:14:21 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 166 ms / 3,000 ms |
| コード長 | 8,303 bytes |
| コンパイル時間 | 1,526 ms |
| コンパイル使用メモリ | 176,052 KB |
| 実行使用メモリ | 50,680 KB |
| 最終ジャッジ日時 | 2024-10-08 00:29:39 |
| 合計ジャッジ時間 | 6,143 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 34 |
ソースコード
#include <bits/stdc++.h>
#define show(x) cout << #x << " = " << x << endl
using namespace std;
using ll = long long;
using pii = pair<int, int>;
using vi = vector<int>;
template <typename T>
ostream& operator<<(ostream& os, const vector<T>& v)
{
os << "sz=" << v.size() << "\n[";
for (const auto& p : v) {
os << p << ",";
}
os << "]\n";
return os;
}
template <typename S, typename T>
ostream& operator<<(ostream& os, const pair<S, T>& p)
{
os << "(" << p.first << "," << p.second
<< ")";
return os;
}
constexpr ll MOD = 1e9 + 7;
template <typename T>
constexpr T INF = numeric_limits<T>::max() / 100;
struct Matrix {
Matrix& operator=(const Matrix& m)
{
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
table[i][j] = m.table[i][j];
}
}
return (*this);
}
Matrix operator*(const Matrix& m) const
{
Matrix result;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
ll v = 0;
for (int k = 0; k < 4; k++) {
v = (v + table[i][k] * m.table[k][j]) % MOD;
}
result.table[i][j] = v;
}
}
return result;
}
static Matrix unit()
{
Matrix result;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
if (i == j) {
result.table[i][i] = 1;
} else {
result.table[i][j] = 0;
}
}
}
return result;
}
static Matrix initial()
{
Matrix init;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
init.table[i][j] = 0;
}
}
init.table[0][0] = 1;
init.table[1][3] = 1;
init.table[2][3] = 1;
init.table[3][3] = 1;
return init;
}
array<array<ll, 4>, 4> table;
};
ostream& operator<<(ostream& os, const Matrix& m)
{
os << "[" << endl;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
cout << m.table[i][j] << " ";
}
cout << endl;
}
cout << "]\n";
return os;
}
template <typename Base>
struct SegmentTree {
public:
using BaseAlgebra = Base;
using AccMonoid = typename BaseAlgebra::AccMonoid;
using OpMonoid = typename BaseAlgebra::OpMonoid;
using T = typename BaseAlgebra::T;
using F = typename BaseAlgebra::OpMonoid::T;
SegmentTree(const int n) : data_num(n), height(__lg(2 * data_num - 1)), size(1 << (1 + height)), half(size >> 1), value(size, AccMonoid::identity()), action(size, OpMonoid::identity()) { assert(n > 0); }
SegmentTree(const std::vector<T>& val) : data_num(val.size()), height(__lg(2 * data_num - 1)), size(1 << (1 + height)), half(size >> 1), value(size), action(size, OpMonoid::identity())
{
for (int data = 0; data < half; data++) {
if (data < data_num) {
value[data + half] = val[data];
} else {
value[data + half] = AccMonoid::identity();
}
}
for (int node = half - 1; node >= 1; node--) {
value[node] = acc(value[2 * node], value[2 * node + 1]);
}
}
T get(const int a) const
{
assert(0 <= a and a < data_num);
return accumulate(a, a + 1);
}
void set(const int a, const T& val)
{
assert(0 <= a and a < data_num);
const int node = a + half;
value[node] = val;
for (int i = node / 2; i > 0; i /= 2) {
value[i] = acc(value[2 * i], value[2 * i + 1]);
}
}
T accumulate(const int a, const int b) const // Accumulate (a,b]
{
assert(0 <= a and a < b and b <= data_num);
return accumulateRec(1, 0, half, a, b);
}
void modify(const int a, const int b, const F& f) // Apply f on (a,b]
{
assert(0 <= a and a < b and b <= data_num);
if (f == OpMonoid::identity()) {
return;
}
modifyRec(1, 0, half, a, b, f);
}
private:
void modifyRec(const int int_index, const int int_left, const int int_right, const int mod_left, const int mod_right, const F& f)
{
if (mod_left <= int_left and int_right <= mod_right) {
value[int_index] = act(f, value[int_index]);
action[int_index] = compose(f, action[int_index]);
} else if (int_right <= mod_left or mod_right <= int_left) {
// Do nothing
} else {
modifyRec(2 * int_index, int_left, (int_left + int_right) / 2, 0, half, action[int_index]);
modifyRec(2 * int_index, int_left, (int_left + int_right) / 2, mod_left, mod_right, f);
modifyRec(2 * int_index + 1, (int_left + int_right) / 2, int_right, 0, half, action[int_index]);
modifyRec(2 * int_index + 1, (int_left + int_right) / 2, int_right, mod_left, mod_right, f);
value[int_index] = acc(value[2 * int_index], value[2 * int_index + 1]);
action[int_index] = OpMonoid::identity();
}
}
T accumulateRec(const int int_index, const int int_left, const int int_right, const int mod_left, const int mod_right) const
{
if (mod_left <= int_left and int_right <= mod_right) {
return value[int_index];
} else if (int_right <= mod_left or mod_right <= int_left) {
return AccMonoid::identity();
} else {
return act(action[int_index], acc(accumulateRec(2 * int_index, int_left, (int_left + int_right) / 2, mod_left, mod_right),
accumulateRec(2 * int_index + 1, (int_left + int_right) / 2, int_right, mod_left, mod_right)));
}
}
const int data_num; // Num of valid data on leaves.
const int height;
const int size;
const int half;
vector<T> value; // Tree for value(length: size)
vector<F> action; // Tree for action(length: half)
bool has_lazy;
const AccMonoid acc{};
const OpMonoid compose{};
const BaseAlgebra act{};
};
struct MatrixMonoid {
using T = Matrix;
struct AccMonoid {
T operator()(const T& a, const T& b) const { return b * a; }
static T identity() { return Matrix::unit(); }
};
struct OpMonoid {
using T = ll;
T operator()(const T& /*f1*/, const T& /*f2*/) const { return 0; }
static constexpr T identity() { return 0; }
};
T operator()(const OpMonoid::T& /*f*/, const T& x) const { return x; }
};
inline Matrix x_renewal(const Matrix& m, ll newval)
{
Matrix result;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
result.table[i][j] = m.table[i][j];
}
}
result.table[0][1] = newval;
return result;
}
inline Matrix y_renewal(const Matrix& m, ll newval)
{
Matrix result;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
result.table[i][j] = m.table[i][j];
}
}
result.table[1][1] = (newval * newval) % MOD;
result.table[1][2] = (2 * newval) % MOD;
result.table[2][2] = newval;
return result;
}
int main()
{
int n;
cin >> n;
vector<Matrix> initial_value(n, Matrix::initial());
SegmentTree<MatrixMonoid> seg(initial_value);
int q;
cin >> q;
for (int i = 0; i < q; i++) {
char c;
cin >> c;
if (c == 'x') {
int ind;
ll x;
cin >> ind >> x;
const auto m = seg.get(ind);
const auto val = x_renewal(m, x);
seg.set(ind, val);
} else if (c == 'y') {
int ind;
ll y;
cin >> ind >> y;
const auto m = seg.get(ind);
const auto val = y_renewal(m, y);
seg.set(ind, val);
} else {
int ind;
cin >> ind;
if (ind == 0) {
cout << 1 << endl;
} else {
const Matrix acc = seg.accumulate(0, ind);
cout << (acc.table[0][0] + acc.table[0][1] + acc.table[0][2] + acc.table[0][3]) % MOD << endl;
}
}
}
return 0;
}