結果

問題 No.577 Prime Powerful Numbers
ユーザー はまやんはまやんはまやんはまやん
提出日時 2017-10-14 14:17:54
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 5,013 bytes
コンパイル時間 1,529 ms
コンパイル使用メモリ 170,036 KB
実行使用メモリ 10,496 KB
最終ジャッジ日時 2024-11-17 18:37:56
合計ジャッジ時間 18,309 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 105 ms
10,496 KB
testcase_01 AC 919 ms
8,576 KB
testcase_02 AC 3 ms
10,496 KB
testcase_03 TLE -
testcase_04 AC 101 ms
10,496 KB
testcase_05 TLE -
testcase_06 AC 742 ms
6,816 KB
testcase_07 TLE -
testcase_08 TLE -
testcase_09 TLE -
testcase_10 AC 2 ms
8,576 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<b;i++)
#define rrep(i,a,b) for(int i=a;i>=b;i--)
#define fore(i,a) for(auto &i:a)
#pragma GCC optimize ("-O3")
using namespace std; void _main(); int main() { cin.tie(0); ios::sync_with_stdio(false); _main(); }
//---------------------------------------------------------------------------------------------------
#ifdef _MSC_VER
#pragma push_macro("long")
#undef long
#ifdef _WIN32
inline unsigned int __builtin_ctz(unsigned int x) { unsigned long r; _BitScanForward(&r, x); return r; }
inline unsigned int __builtin_clz(unsigned int x) { unsigned long r; _BitScanReverse(&r, x); return 31 - r; }
inline unsigned int __builtin_ffs(unsigned int x) { unsigned long r; return _BitScanForward(&r, x) ? r + 1 : 0; }
inline unsigned int __builtin_popcount(unsigned int x) { return __popcnt(x); }
inline unsigned int hidword(unsigned long long x) { return static_cast<unsigned int>(x >> 32); }
inline unsigned int lodword(unsigned long long x) { return static_cast<unsigned int>(x & 0xFFFFFFFF); }
inline unsigned long long __builtin_ctzll(unsigned long long x) { return lodword(x) ? __builtin_ctz(lodword(x)) : __builtin_ctz(hidword(x)) + 32; }
inline unsigned long long __builtin_clzll(unsigned long long x) { return hidword(x) ? __builtin_clz(hidword(x)) : __builtin_clz(lodword(x)) + 32; }
inline unsigned long long __builtin_ffsll(unsigned long long x) { return lodword(x) ? __builtin_ffs(lodword(x)) : hidword(x) ? __builtin_ffs(hidword(x)) + 32 : 0; }
inline unsigned long long __builtin_popcountll(unsigned long long x) { return __builtin_popcount(lodword(x)) + __builtin_popcount(hidword(x)); }
#endif // _WIN32
#pragma pop_macro("long")
#endif // _MSC_VER
typedef long long ll;
typedef __int128 int128_t;
//typedef ll int128_t;
int128_t powmod(int128_t x, int128_t y, int128_t p) { // O(log y)
    assert(0 <= x and x < p);
    assert(0 <= y);
    int128_t z = 1;
    for (int128_t i = 1; i <= y; i <<= 1) {
        if (y & i) z = z * x % p;
        x = x * x % p;
    }
    return z;
}
int K = 10;
int getrand(int l, int r) { // [l, r]
    static uint32_t y = time(NULL);
    y ^= (y << 13); y ^= (y >> 17);
    y ^= (y << 5);
    return y % (r - l + 1) + l;
}
ll getrandll(ll l, ll r) { // [l,r]
    ll a = getrand(0, 999999999);
    ll b = getrand(0, 999999999);

    ll x = a * 1000000000LL + b;
    assert(0 <= x);

    return x % (r - l + 1) + l;
}
bool isprime(ll n) {
    if (n == 2) return true;
    if (n == 1 || n % 2 == 0) return false;
    const ll d = (n - 1) >> __builtin_ctzll(n - 1);
    rep(_, 0, K) {
        ll a = getrandll(1, n - 2);
        int128_t t = d;
        int128_t y = powmod(a, t, n);
        while (t != n - 1 and y != 1 and y != n - 1) {
            y = y * y % n;
            t *= 2;
        }
        if (y != n - 1 and t % 2 == 0) return false;
    }
    return true;
}
/*---------------------------------------------------------------------------------------------------
            ∧_∧  
      ∧_∧  (´<_` )  Welcome to My Coding Space!
     ( ´_ゝ`) /  ⌒i     
    /   \     | |     
    /   / ̄ ̄ ̄ ̄/  |  
  __(__ニつ/     _/ .| .|____  
     \/____/ (u ⊃  
---------------------------------------------------------------------------------------------------*/




typedef long long ll; typedef long double ld;
#define INF 1LL<<60
ld lginf = -1;
ll mul(ll a, ll b) {
    if (lginf < 0) lginf = log10l(INF); ld aa = log10l(a), bb = log10l(b);
    if (lginf <= aa + bb) return INF; return a * b;
}
ll gcd(ll a, ll b) { return a ? gcd(b%a, a) : b; }
ll lcm(ll a, ll b) { if (a == INF || b == INF) return INF; return mul(a / gcd(a, b), b); }
ll fastpow(ll x, ll n) {
    ll ret = 1;
    while (0 < n) {
        if ((n % 2) == 0) x = mul(x,x), n >>= 1;
        else ret = mul(ret,x), --n;
    }
    return ret;
}









ll N;
#define INF 1LL<<60
#define yes "Yes"
#define no "No"
//---------------------------------------------------------------------------------------------------
int isprimeFact(ll n) {
    int k = 1;
    for (int128_t q = 2; q < n; q *= 2) {
        ll ng = 0, ok = n + 1;
        while (ng + 1 != ok) {
            ll x = (ng + ok) / 2;
            if (n <= fastpow(x, k)) ok = x;
            else ng = x;
        }

        if (fastpow(ok, k) == n) {
            if (isprime(ok)) return 1;
        }
        k++;
    }
    return 0;
}
//---------------------------------------------------------------------------------------------------
string solve() {
    cin >> N;
    if (N % 2 == 0) {
        if (4 <= N) return yes;
        else return no;
    }
    
    for (int128_t q = 2; q < N; q *= 2) if (isprimeFact(N - q)) return yes;
    return no;
}
//---------------------------------------------------------------------------------------------------
void _main() {
    int Q; cin >> Q;
    rep(q, 0, Q) cout << solve() << endl;
}
0