結果
問題 | No.424 立体迷路 |
ユーザー | te-sh |
提出日時 | 2017-10-26 17:31:36 |
言語 | D (dmd 2.106.1) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,391 bytes |
コンパイル時間 | 894 ms |
コンパイル使用メモリ | 130,124 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-06-12 22:09:26 |
合計ジャッジ時間 | 1,835 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,812 KB |
testcase_01 | AC | 1 ms
6,944 KB |
testcase_02 | AC | 1 ms
6,940 KB |
testcase_03 | AC | 1 ms
6,944 KB |
testcase_04 | AC | 1 ms
6,940 KB |
testcase_05 | AC | 1 ms
6,944 KB |
testcase_06 | AC | 1 ms
6,940 KB |
testcase_07 | AC | 1 ms
6,944 KB |
testcase_08 | AC | 1 ms
6,944 KB |
testcase_09 | AC | 1 ms
6,940 KB |
testcase_10 | AC | 1 ms
6,944 KB |
testcase_11 | AC | 2 ms
6,944 KB |
testcase_12 | AC | 1 ms
6,944 KB |
testcase_13 | AC | 1 ms
6,940 KB |
testcase_14 | AC | 1 ms
6,944 KB |
testcase_15 | AC | 1 ms
6,940 KB |
testcase_16 | AC | 1 ms
6,940 KB |
testcase_17 | AC | 1 ms
6,940 KB |
testcase_18 | AC | 1 ms
6,940 KB |
testcase_19 | AC | 1 ms
6,940 KB |
testcase_20 | AC | 1 ms
6,940 KB |
testcase_21 | AC | 1 ms
6,944 KB |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | AC | 3 ms
6,940 KB |
testcase_25 | AC | 3 ms
6,944 KB |
ソースコード
import std.algorithm, std.conv, std.range, std.stdio, std.string; import std.container; // SList, DList, BinaryHeap import std.math; // math functions alias point = Point!int; alias igrid = Grid!(int, int); alias bgrid = Grid!(bool, int); void main() { auto rd1 = readln.split.to!(int[]), h = rd1[0], w = rd1[1]; auto rd2 = readln.split.to!(int[]), sx = rd2[0]-1, sy = rd2[1]-1, gx = rd2[2]-1, gy = rd2[3]-1; auto ps = point(sy, sx), pg = point(gy, gx); auto ig = igrid(h, w); foreach (i; 0..h) { auto b = readln.chomp; foreach (j; 0..w) ig[i][j] = b[j] - '0'; } auto q = DList!point(ps), bg = bgrid(h, w); bg[ps] = true; while (!q.empty) { auto p = q.front; q.removeFront(); if (p == pg) { writeln("YES"); return; } foreach (np; ig.sibPoints4(p).filter!(np => !bg[np])) if ((ig[p] - ig[np]).abs <= 1) { bg[np] = true; q.insertBack(np); } foreach (np; ig.sibPoints42(p).filter!(np => !bg[np])) if (ig[p] == ig[np]) { bg[np] = true; q.insertBack(np); } } writeln("NO"); } struct Point(T) { T x, y; pure auto opBinary(string op: "+")(Point!T rhs) const { return Point!T(x + rhs.x, y + rhs.y); } pure auto opBinary(string op: "-")(Point!T rhs) const { return Point!T(x - rhs.x, y - rhs.y); } pure auto opBinary(string op: "*")(Point!T rhs) const { return x * rhs.x + y * rhs.y; } pure auto opBinary(string op: "*")(T a) const { return Point!T(x * a, y * a); } pure auto opBinary(string op: "/")(T a) const { return Point!T(x / a, y / a); } pure auto hypot2() const { return x ^^ 2 + y ^^ 2; } } struct Grid(T, U) { import std.algorithm, std.conv, std.range, std.traits, std.typecons; const sibs4 = [Point!U(-1, 0), Point!U(0, -1), Point!U(1, 0), Point!U(0, 1)]; const sibs42 = [Point!U(-2, 0), Point!U(0, -2), Point!U(2, 0), Point!U(0, 2)]; const sibs8 = [Point!U(-1, 0), Point!U(-1, -1), Point!U(0, -1), Point!U(1, -1), Point!U(1, 0), Point!U(1, 1), Point!U(0, 1), Point!U(-1, 1)]; T[][] m; const size_t rows, cols; mixin Proxy!m; this(size_t r, size_t c) { rows = r; cols = c; m = new T[][](rows, cols); } this(T[][] s) { rows = s.length; cols = s[0].length; m = s; } pure auto dup() const { return Grid(m.map!(r => r.dup).array); } ref pure auto opIndex(Point!U p) { return m[p.y][p.x]; } ref pure auto opIndex(size_t y) { return m[y]; } ref pure auto opIndex(size_t y, size_t x) const { return m[y][x]; } static if (isAssignable!T) { auto opIndexAssign(T v, Point!U p) { return m[p.y][p.x] = v; } auto opIndexAssign(T v, size_t y, size_t x) { return m[y][x] = v; } auto opIndexOpAssign(string op, V)(V v, Point!U p) { return mixin("m[p.y][p.x] " ~ op ~ "= v"); } auto opIndexOpAssign(string op, V)(V v, size_t y, size_t x) { return mixin("m[y][x] " ~ op ~ "= v"); } } pure auto validPoint(Point!U p) { return p.x >= 0 && p.x < cols && p.y >= 0 && p.y < rows; } pure auto points() const { return rows.to!U.iota.map!(y => cols.to!U.iota.map!(x => Point!U(x, y))).joiner; } pure auto sibPoints4(Point!U p) { return sibs4.map!(s => p + s).filter!(p => validPoint(p)); } pure auto sibPoints42(Point!U p) { return sibs42.map!(s => p + s).filter!(p => validPoint(p)); } pure auto sibPoints8(Point!U p) { return sibs8.map!(s => p + s).filter!(p => validPoint(p)); } }