結果
| 問題 |
No.577 Prime Powerful Numbers
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2017-10-27 19:52:07 |
| 言語 | C (gcc 13.3.0) |
| 結果 |
AC
|
| 実行時間 | 12 ms / 2,000 ms |
| コード長 | 4,062 bytes |
| コンパイル時間 | 216 ms |
| コンパイル使用メモリ | 32,256 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2024-11-21 21:23:14 |
| 合計ジャッジ時間 | 808 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 10 |
ソースコード
#include <stdio.h>
#include <stdint.h>
typedef unsigned __int128 uint128_t;
void ex_gcd(uint64_t y, uint64_t *b){
int i;
uint64_t u, v;
u = 1; v = 0;
uint64_t x = 1LL<<63;
for(i=0;i<64;i++){
if(u&1){
u = (u + y) / 2;
v = v/2 + x;
}
else {
u >>= 1; v >>= 1;
}
}
*b = v;
}
uint64_t MR(uint128_t x, uint64_t m, uint64_t n){
uint64_t z = ((uint128_t) ((uint64_t) x * m) * n + x) >> 64;
return z < n ? z : z - n;
}
uint64_t RM(uint64_t x, uint64_t r2, uint64_t m, uint64_t n){
return MR((uint128_t) r2 * x, m, n);
}
uint64_t modpow64(uint64_t a, uint64_t k, uint64_t m, uint64_t n, uint64_t one){
uint64_t r;
for(r=one;k;k/=2){
if(k&1) r = MR((uint128_t)r*a, m, n);
a = MR((uint128_t) a*a, m, n);
}
return r;
}
uint32_t modpow32(uint32_t a, uint32_t k, uint32_t n){
uint32_t r;
for(r=1;k;k/=2){
if(k&1) r = (uint64_t)r*a%n;
a = (uint64_t) a*a%n;
}
return r;
}
const uint32_t as32[] = {2, 7, 61};
int is_prime32(uint32_t n){
int i, j, r;
uint32_t d;
if(n <= 1) return 0;
if(n <= 3) return 1;
if(!(n & 1)) return 0;
r = __builtin_ctz(n-1);
d = (n-1) >> r;
for(i=0;i<3;i++){
uint32_t a = as32[i] % n;
if(a == 0) return 1;
uint32_t t = modpow32(a, d, n);
if(t == 1) continue;
for(j=0;t!=n-1;j++){
if(j == r-1) return 0;
t = (uint64_t) t * t % n;
if(t == 1) return 0;
}
}
return 1;
}
const uint64_t as64[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
int is_prime64(uint64_t n){
int i, j, r;
uint64_t d, one, mone, r2, s, m;
if(n <= 1) return 0;
if(n <= 3) return 1;
if(!(n & 1)) return 0;
if(n < (1L << 32)) is_prime32(n);
r = __builtin_ctzll(n-1);
d = (n-1) >> r;
ex_gcd(n, &m);
one = -1UL % n + 1;
mone = n - one;
r2 = (uint128_t) one * one % n;
for(i=0;i<7;i++){
uint64_t a = RM(as64[i], r2, m, n);
if(a == 0) return 1;
uint64_t t = modpow64(a, d, m, n, one);
if(t == one) continue;
for(j=0;t!=mone;j++){
if(j == r-1) return 0;
t = MR((uint128_t) t * t, m, n);
if(t == one) return 0;
}
}
return 1;
}
uint64_t gcd64(uint64_t x, uint64_t y){
if(x == 0 || y == 0) return x^y;
int bx = __builtin_ctzll(x);
int by = __builtin_ctzll(y);
int k = (bx < by) ? bx : by;
x >>= bx;
y >>= by;
while(x!=y){
if(x < y){
y -= x;
y >>= __builtin_ctzll(y);
}
else {
x -= y;
x >>= __builtin_ctzll(x);
}
}
return x << k;
}
int is_power64(uint64_t n, uint64_t p){
int i;
uint64_t a[49];
uint64_t x;
a[0] = p;
a[1] = p * p;
for(i=1; a[i] <= n && a[i] > a[i-1]; i++){
a[i+1] = a[i] * a[i];
}
/*
if(a[--i] == n) return 1;
while(i){
if(n % a[i]) return 0;
n /= a[i];
while(i > 0 && n < a[--i]) ;
}
*/
x = a[--i];
if(x == n) return 1;
for(--i; i>=0;--i){
uint64_t y = x * a[i];
if(y == n) return 1;
else if(y < x) return 0;
else if(y < n) x = y;
}
return 0;
}
uint64_t is_primepower64(uint64_t n){
uint64_t i;
if(n <= 1) return 0;
if(!(n&(n-1))) return 2;
if(!(n&1)) return 0;
uint64_t s, m, r2, one;
ex_gcd(n, &m);
one = -1UL % n + 1;
r2 = (uint128_t) one * one % n;
for(i=0;i<1;i++){
uint64_t y = as64[i]%n;
uint64_t x = RM(y, r2, m, n);
uint64_t in = MR((uint128_t)modpow64(x, n, m, n, one), m, n);
uint64_t inmi = in >= y ? in - y : in + n - y;
uint64_t p = gcd64(inmi, n);
if(p == 1) return 0;
if(is_prime64(p)){
// while(n % p == 0) n /= p;
// return n == 1;
return is_power64(n, p);
}
n = p;
ex_gcd(n, &m);
one = -1UL % n + 1;
r2 = (uint128_t) one * one % n;
}
return 0;
}
int main(){
int i, q;
scanf("%d", &q);
for(i=0;i<q;i++){
uint64_t n;
scanf("%ld", &n);
if(n<=2) puts("No");
else if((n&1)==0) puts("Yes");
else {
uint64_t j;
for(j=2; j<n; j<<=1){
if(is_primepower64(n-j)){
break;
}
}
if(j>=n) puts("No"); else puts("Yes");
}
}
return 0;
}