結果
| 問題 |
No.577 Prime Powerful Numbers
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2017-10-28 11:56:12 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 11 ms / 2,000 ms |
| コード長 | 3,932 bytes |
| コンパイル時間 | 727 ms |
| コンパイル使用メモリ | 69,760 KB |
| 最終ジャッジ日時 | 2025-01-05 03:38:35 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 10 |
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:181:8: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
181 | scanf("%d", &q);
| ~~~~~^~~~~~~~~~
main.cpp:184:10: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
184 | scanf("%ld", &n);
| ~~~~~^~~~~~~~~~~
ソースコード
#include <cstdio>
#include <cstdint>
#include <cmath>
#include <set>
typedef __int128 int128_t;
typedef unsigned __int128 uint128_t;
uint64_t ex_gcd(uint64_t y){
int i;
uint64_t u, v;
u = 1; v = 0;
uint64_t x = 1LL<<63;
for(i=0;i<64;i++){
if(u&1){
u = (u + y) / 2;
v = v/2 + x;
}
else {
u >>= 1; v >>= 1;
}
}
return v;
}
static inline uint64_t MR(uint128_t x, uint64_t m, uint64_t n){
uint64_t z = ((uint128_t) ((uint64_t) x * m) * n + x) >> 64;
return z < n ? z : z - n;
}
static inline uint64_t RM(uint64_t x, uint64_t r2, uint64_t m, uint64_t n){
return MR((uint128_t) r2 * x, m, n);
}
// k > 0
static inline uint64_t modpow64(uint64_t a, uint64_t k, uint64_t m, uint64_t n){
uint64_t r;
for(r=a,--k;k;k/=2){
if(k&1) r = MR((uint128_t)r*a, m, n);
a = MR((uint128_t) a*a, m, n);
}
return r;
}
static inline uint32_t modpow32(uint32_t a, uint32_t k, uint32_t n){
uint32_t r;
for(r=1;k;k/=2){
if(k&1) r = (uint64_t)r*a%n;
a = (uint64_t) a*a%n;
}
return r;
}
std::set<uint64_t> set_pp;
const int maxp = 7130;
//const int maxp = 1<<16;
//const int maxp = 2642246;
int sieve_p[maxp/2];
void make_set_pp(){
uint32_t i;
for(i=3;i<maxp;i+=2){
if(!sieve_p[i/2]){
uint64_t j;
for(j=3*i;j<maxp;j+=2*i){
sieve_p[j/2] = 1;
}
j=i;
do { set_pp.insert(j);} while(!__builtin_umulll_overflow(j, i, (long long unsigned *)&j));
}
}
}
/*
uint64_t sieve;
void make_sieve(){
const uint32_t ps[] = {3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127};
int i;
for(i=0;i<sizeof(ps)/sizeof(ps[0]);i++){
sieve |= (1LL << (ps[i]/2));
}
}
static inline int is_primesmall(uint32_t n){
return !!(sieve & (1LL << (n/2)));
}
*/
int is_prime32(uint32_t n){
static const uint32_t as32[] = {2, 7, 61};
int i, j, r;
uint32_t d;
r = __builtin_ctz(n-1);
d = (n-1) >> r;
for(i=0;i<3;i++){
uint32_t a = as32[i] % n;
if(a == 0) return 1;
uint32_t t = modpow32(a, d, n);
if(t == 1) continue;
for(j=0;t!=n-1;j++){
if(j == r-1) return 0;
t = (uint64_t) t * t % n;
if(t == 1) return 0;
}
}
return 1;
}
int is_prime64(uint64_t n){
static const uint64_t as64[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
int i, j, r;
uint64_t d, one, mone, r2, m;
if(n < (1LL << 32)) return is_prime32(n);
r = __builtin_ctzll(n-1);
d = (n-1) >> r;
m = ex_gcd(n);
one = -1ULL % n + 1;
mone = n - one;
r2 = (uint128_t) (int128_t) -1 % n + 1;
for(i=0;i<7;i++){
uint64_t a = RM(as64[i], r2, m, n);
if(a == 0) return 1;
uint64_t t = modpow64(a, d, m, n);
if(t == one) continue;
for(j=0;t!=mone;j++){
if(j == r-1) return 0;
t = MR((uint128_t) t * t, m, n);
// if(t == one) return 0;
}
}
return 1;
}
int is_prime(uint64_t n){
if(n <= 1) return 0;
if(n <= 3) return 1;
if(!(n & 1)) return 0;
// if(n < 128) return is_primesmall(n);
if(n < (1LL << 32)) return is_prime32(n);
return is_prime64(n);
}
uint64_t is_oddprimepower64(uint64_t n){
if(n == 1) return 0;
if(set_pp.count(n)) return 1;
uint32_t k = round(sqrt(n));
if(k*k==n){
n = k;
k = round(sqrt(n));
if(k*k == n) return is_prime(k);
else return is_prime(n);
}
k = round(cbrt(n));
if(k*k*k==n) return is_prime(k);
return is_prime(n);
}
int main(){
int i, q;
make_set_pp();
/*
for(uint64_t x: set_pp){
printf("%lu\n", x);
}
printf("%u\n", set_pp.size());
return 0;
*/
scanf("%d", &q);
for(i=0;i<q;i++){
uint64_t n;
scanf("%ld", &n);
if(n<=2) puts("No");
else if((n&1)==0) puts("Yes");
else {
uint64_t j;
for(j=2; j<n; j<<=1){
if(is_oddprimepower64(n-j)){
break;
}
}
if(j>=n) puts("No"); else puts("Yes");
}
}
return 0;
}