結果
問題 | No.577 Prime Powerful Numbers |
ユーザー | Ryuhei Mori |
提出日時 | 2017-10-28 11:56:12 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 11 ms / 2,000 ms |
コード長 | 3,932 bytes |
コンパイル時間 | 691 ms |
コンパイル使用メモリ | 70,140 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2024-11-22 03:01:28 |
合計ジャッジ時間 | 1,237 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 3 ms
6,816 KB |
testcase_01 | AC | 3 ms
6,816 KB |
testcase_02 | AC | 3 ms
6,816 KB |
testcase_03 | AC | 4 ms
6,816 KB |
testcase_04 | AC | 3 ms
6,816 KB |
testcase_05 | AC | 10 ms
6,824 KB |
testcase_06 | AC | 4 ms
6,820 KB |
testcase_07 | AC | 11 ms
6,820 KB |
testcase_08 | AC | 5 ms
6,820 KB |
testcase_09 | AC | 4 ms
6,816 KB |
testcase_10 | AC | 2 ms
6,820 KB |
ソースコード
#include <cstdio> #include <cstdint> #include <cmath> #include <set> typedef __int128 int128_t; typedef unsigned __int128 uint128_t; uint64_t ex_gcd(uint64_t y){ int i; uint64_t u, v; u = 1; v = 0; uint64_t x = 1LL<<63; for(i=0;i<64;i++){ if(u&1){ u = (u + y) / 2; v = v/2 + x; } else { u >>= 1; v >>= 1; } } return v; } static inline uint64_t MR(uint128_t x, uint64_t m, uint64_t n){ uint64_t z = ((uint128_t) ((uint64_t) x * m) * n + x) >> 64; return z < n ? z : z - n; } static inline uint64_t RM(uint64_t x, uint64_t r2, uint64_t m, uint64_t n){ return MR((uint128_t) r2 * x, m, n); } // k > 0 static inline uint64_t modpow64(uint64_t a, uint64_t k, uint64_t m, uint64_t n){ uint64_t r; for(r=a,--k;k;k/=2){ if(k&1) r = MR((uint128_t)r*a, m, n); a = MR((uint128_t) a*a, m, n); } return r; } static inline uint32_t modpow32(uint32_t a, uint32_t k, uint32_t n){ uint32_t r; for(r=1;k;k/=2){ if(k&1) r = (uint64_t)r*a%n; a = (uint64_t) a*a%n; } return r; } std::set<uint64_t> set_pp; const int maxp = 7130; //const int maxp = 1<<16; //const int maxp = 2642246; int sieve_p[maxp/2]; void make_set_pp(){ uint32_t i; for(i=3;i<maxp;i+=2){ if(!sieve_p[i/2]){ uint64_t j; for(j=3*i;j<maxp;j+=2*i){ sieve_p[j/2] = 1; } j=i; do { set_pp.insert(j);} while(!__builtin_umulll_overflow(j, i, (long long unsigned *)&j)); } } } /* uint64_t sieve; void make_sieve(){ const uint32_t ps[] = {3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127}; int i; for(i=0;i<sizeof(ps)/sizeof(ps[0]);i++){ sieve |= (1LL << (ps[i]/2)); } } static inline int is_primesmall(uint32_t n){ return !!(sieve & (1LL << (n/2))); } */ int is_prime32(uint32_t n){ static const uint32_t as32[] = {2, 7, 61}; int i, j, r; uint32_t d; r = __builtin_ctz(n-1); d = (n-1) >> r; for(i=0;i<3;i++){ uint32_t a = as32[i] % n; if(a == 0) return 1; uint32_t t = modpow32(a, d, n); if(t == 1) continue; for(j=0;t!=n-1;j++){ if(j == r-1) return 0; t = (uint64_t) t * t % n; if(t == 1) return 0; } } return 1; } int is_prime64(uint64_t n){ static const uint64_t as64[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}; int i, j, r; uint64_t d, one, mone, r2, m; if(n < (1LL << 32)) return is_prime32(n); r = __builtin_ctzll(n-1); d = (n-1) >> r; m = ex_gcd(n); one = -1ULL % n + 1; mone = n - one; r2 = (uint128_t) (int128_t) -1 % n + 1; for(i=0;i<7;i++){ uint64_t a = RM(as64[i], r2, m, n); if(a == 0) return 1; uint64_t t = modpow64(a, d, m, n); if(t == one) continue; for(j=0;t!=mone;j++){ if(j == r-1) return 0; t = MR((uint128_t) t * t, m, n); // if(t == one) return 0; } } return 1; } int is_prime(uint64_t n){ if(n <= 1) return 0; if(n <= 3) return 1; if(!(n & 1)) return 0; // if(n < 128) return is_primesmall(n); if(n < (1LL << 32)) return is_prime32(n); return is_prime64(n); } uint64_t is_oddprimepower64(uint64_t n){ if(n == 1) return 0; if(set_pp.count(n)) return 1; uint32_t k = round(sqrt(n)); if(k*k==n){ n = k; k = round(sqrt(n)); if(k*k == n) return is_prime(k); else return is_prime(n); } k = round(cbrt(n)); if(k*k*k==n) return is_prime(k); return is_prime(n); } int main(){ int i, q; make_set_pp(); /* for(uint64_t x: set_pp){ printf("%lu\n", x); } printf("%u\n", set_pp.size()); return 0; */ scanf("%d", &q); for(i=0;i<q;i++){ uint64_t n; scanf("%ld", &n); if(n<=2) puts("No"); else if((n&1)==0) puts("Yes"); else { uint64_t j; for(j=2; j<n; j<<=1){ if(is_oddprimepower64(n-j)){ break; } } if(j>=n) puts("No"); else puts("Yes"); } } return 0; }