結果
問題 | No.617 Nafmo、買い出しに行く |
ユーザー | はむこ |
提出日時 | 2017-12-18 18:47:00 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 18 ms / 2,000 ms |
コード長 | 3,217 bytes |
コンパイル時間 | 1,441 ms |
コンパイル使用メモリ | 169,504 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-05-09 11:41:21 |
合計ジャッジ時間 | 2,219 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 1 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 1 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 1 ms
5,376 KB |
testcase_12 | AC | 3 ms
5,376 KB |
testcase_13 | AC | 18 ms
5,376 KB |
testcase_14 | AC | 3 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 1 ms
5,376 KB |
testcase_17 | AC | 1 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 1 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define rep(i,n) for(long long i = 0; i < (long long)(n); i++) #define repi(i,a,b) for(long long i = (long long)(a); i < (long long)(b); i++) template<class T1, class T2> bool chmin(T1 &a, T2 b) { return b < a && (a = b, true); } template<class T1, class T2> bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); } using ll = long long; using vll = vector<ll>; using vvll = vector<vll>; using P = pair<ll, ll>; #define INF (ll)1e18 #define SIZE 21 ll n, W; ll best_feasible = 0; vector<P> ab; vll v, w; // [0, i)がb[0, i)のように確定していて、その後が不確定である時、線形緩和問題を解く // 返り値(double, bool) = (緩和問題の最適解, その最適解が元問題の制約を厳密に満たすか) pair<double, bool> solveRelaxationProblem(ll i, bitset<SIZE>& b) { double ans = 0; double w_now = W; rep(j, i) ans += b[j] * v[j], w_now -= b[j] * w[j]; bool faf = 1; repi(j, i, n) { double tmp = min<double>(w_now, w[j]); faf &= (tmp == 0 || tmp == w[j]); w_now -= tmp; ans += tmp * (v[j] * 1.0 / w[j]); } return make_pair(ans, faf); } // [0, i)がb[0, i)のように確定していてその後が不確定である時、線形緩和問題を解く // (負荷情報として、確定しているところの価値総和がv_now, 重さ総和w_nowを持っておく) // // 返り値double = 最適解 ll dfs(ll i, bitset<SIZE>& b, ll v_now, ll w_now) { // string s = b.to_string(); reverse(begin(s), end(s)); cout << s << endl; if (i == n) { best_feasible = max<ll>(best_feasible, v_now); return v_now; } auto relax_p = solveRelaxationProblem(i, b); double relax = relax_p.first; double satisfiability = relax_p.second; if (satisfiability) { best_feasible = max<ll>(best_feasible, relax); return relax; } // 緩和問題の解を与える選び方が元問題の制約を満たしているので、それが最適でもある if (relax < best_feasible) { return -INF; } // 緩和問題の解が、今までの最善許容解に達さないので、探索しても無駄 ll tmp = -INF; // 解がありそうな方を先に分岐するのが極めて重要!今回、0->1の順番で分岐するとTLEする。 // 1を分岐 if (w_now+w[i]<=W) { b[i] = 1; chmax(tmp, dfs(i+1, b, v_now+v[i], w_now+w[i])); b[i] = 0; chmax(best_feasible, tmp); } // 0を分岐 chmax(tmp, dfs(i+1, b, v_now, w_now)); chmax(best_feasible, tmp); return tmp; } int main(void) { cin >> n >> W; rep(i, n) { P tmp; cin >> tmp.first; tmp.second = tmp.first; if (tmp.second <= W) ab.push_back(tmp); } n = ab.size(); sort(ab.begin(), ab.end(), [&](P l, P r) { return l.first*r.second>r.first*l.second; }); v = vll(n), w = vll(n); rep(i, n) { v[i] = ab[i].first; w[i] = ab[i].second; } ll w_now = W; rep(i, n) { if (w[i] <= w_now) { w_now -= w[i]; best_feasible += v[i]; } } bitset<SIZE> b; cout << dfs(0, b, 0, 0) << endl;; return 0; }