結果
問題 | No.195 フィボナッチ数列の理解(2) |
ユーザー | roiti46 |
提出日時 | 2015-04-26 23:29:35 |
言語 | Python2 (2.7.18) |
結果 |
WA
|
実行時間 | - |
コード長 | 1,701 bytes |
コンパイル時間 | 496 ms |
コンパイル使用メモリ | 7,076 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-07-05 02:25:35 |
合計ジャッジ時間 | 1,745 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 11 ms
6,812 KB |
testcase_01 | AC | 11 ms
6,940 KB |
testcase_02 | AC | 17 ms
6,940 KB |
testcase_03 | AC | 10 ms
6,940 KB |
testcase_04 | AC | 17 ms
6,940 KB |
testcase_05 | WA | - |
testcase_06 | AC | 11 ms
6,940 KB |
testcase_07 | AC | 11 ms
6,944 KB |
testcase_08 | AC | 11 ms
6,940 KB |
testcase_09 | AC | 11 ms
6,944 KB |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | AC | 17 ms
6,944 KB |
testcase_17 | WA | - |
testcase_18 | AC | 17 ms
6,944 KB |
testcase_19 | WA | - |
testcase_20 | AC | 18 ms
6,940 KB |
testcase_21 | WA | - |
testcase_22 | AC | 17 ms
6,940 KB |
testcase_23 | WA | - |
testcase_24 | AC | 18 ms
6,940 KB |
ソースコード
eps = 1e-8 def gauss_jordan(A, b): n = len(A) B = [A[i] + [b[i]] for i in xrange(n)] for i in xrange(n): pivot = i for j in xrange(i, n): if abs(B[j][i]) > abs(B[pivot][i]): pivot = j B[i], B[pivot] = B[pivot], B[i] if abs(B[i][i]) < eps: return [] for j in xrange(i + 1, n + 1): B[i][j] /= B[i][i] for j in xrange(0, n): if i != j: for k in xrange(i + 1, n + 1): B[j][k] -= B[j][i] * B[i][k] res = [0] * n for i in xrange(n): res[i] = B[i][n] return res coeff = [1, 1] while coeff[-2] <= 10 ** 9: coeff.append(coeff[-1] + coeff[-2]) N = len(coeff) X, Y, Z = sorted(map(int, raw_input().split())) uniq = len(set([X, Y, Z])) if uniq == 1: A = 1 B = 99999999 for i in xrange(N - 1): if X - coeff[i] > 0 and (X - coeff[i]) % coeff[i + 1] == 0: B = min(B, (X - coeff[i]) / coeff[i + 1]) print A, B exit() if uniq == 2: X, Y = sorted(list(set([X, Y, Z]))) A = B = 1e10 for i in xrange(N - 1): for j in xrange(i + 1, N - 1): Ax = [[coeff[i], coeff[i + 1]], [coeff[j], coeff[j + 1]]] b = [X, Y] tmp = gauss_jordan(Ax, b) if len(tmp) == 0: continue tA, tB = tmp if min(tA, tB) <= 0: continue if uniq == 3: for k in xrange(j, N - 1): if coeff[k] * tA + coeff[k + 1] * tB == Z: break else: continue if tA < A or tA == A and tB < B: A, B = tA, tB if max(A, B) < 1e10: print A, B else: print -1