結果

問題 No.650 行列木クエリ
ユーザー ei1333333ei1333333
提出日時 2018-02-09 23:05:58
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 112 ms / 2,000 ms
コード長 6,708 bytes
コンパイル時間 3,172 ms
コンパイル使用メモリ 229,228 KB
実行使用メモリ 21,264 KB
最終ジャッジ日時 2024-10-09 08:58:46
合計ジャッジ時間 4,047 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 32 ms
7,128 KB
testcase_02 AC 110 ms
21,264 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 34 ms
7,128 KB
testcase_05 AC 112 ms
21,116 KB
testcase_06 AC 2 ms
5,248 KB
testcase_07 AC 2 ms
5,248 KB
testcase_08 AC 37 ms
6,272 KB
testcase_09 AC 74 ms
16,512 KB
testcase_10 AC 2 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>

using namespace std;

struct CentroidPathDecomposition
{
  struct Centroid
  {
    int ParIndex, ParDepth, Deep;
    vector< int > node;

    Centroid(int idx, int dep, int deep) : ParIndex(idx), ParDepth(dep), Deep(deep) {}

    inline size_t size()
    {
      return (node.size());
    }

    inline int &operator[](int k)
    {
      return (node[k]);
    }

    inline pair< int, int > Up()
    {
      return (make_pair(ParIndex, ParDepth));
    }
  };

  vector< vector< int > > graph;
  vector< int > SubTreeSize, NextPath;
  vector< int > TreeIndex, TreeDepth;
  vector< Centroid > Centroids;

  void BuildSubTreeSize()
  {
    stack< pair< int, int > > s;
    s.emplace(0, -1);
    while(!s.empty()) {
      auto p = s.top();
      s.pop();
      if(~SubTreeSize[p.first]) {
        NextPath[p.first] = -1;
        for(auto &to : graph[p.first]) {
          if(p.second == to) continue;
          SubTreeSize[p.first] += SubTreeSize[to];
          if(NextPath[p.first] == -1 || SubTreeSize[NextPath[p.first]] < SubTreeSize[to]) {
            NextPath[p.first] = to;
          }
        }
      } else {
        s.push(p);
        SubTreeSize[p.first] = 1;
        for(auto &to : graph[p.first]) {
          if(p.second != to) s.emplace(to, p.first);
        }
      }
    }
  }

  void BuildPath()
  {
    stack< pair< int, int > > s;
    Centroids.emplace_back(-1, -1, 0);
    s.emplace(0, -1);
    TreeIndex[0] = 0;
    while(!s.empty()) {
      auto p = s.top();
      s.pop();
      TreeDepth[p.first] = (int) Centroids[TreeIndex[p.first]].size();
      for(auto &to : graph[p.first]) {
        if(p.second == to) continue;
        if(to == NextPath[p.first]) { // Centroid-Path
          TreeIndex[to] = TreeIndex[p.first];
        } else {                  // Not Centroid-Path
          TreeIndex[to] = (int) Centroids.size();
          Centroids.emplace_back(TreeIndex[p.first], TreeDepth[p.first], Centroids[TreeIndex[p.first]].Deep + 1);
        }
        s.emplace(to, p.first);
      }
      Centroids[TreeIndex[p.first]].node.emplace_back(p.first);
    }
  }

  void AddEdge(int x, int y)
  {
    graph[x].push_back(y);
    graph[y].push_back(x);
  }

  virtual void Build()
  {
    BuildSubTreeSize();
    BuildPath();
  }

  inline size_t size()
  {
    return (Centroids.size());
  }

  inline pair< int, int > Information(int idx)
  {
    return (make_pair(TreeIndex[idx], TreeDepth[idx]));
  }

  inline Centroid &operator[](int k)
  {
    return (Centroids[k]);
  }

  inline int LCA(int a, int b)
  {
    int TreeIdxA, TreeDepthA, TreeIdxB, TreeDepthB;
    tie(TreeIdxA, TreeDepthA) = Information(a);
    tie(TreeIdxB, TreeDepthB) = Information(b);
    while(TreeIdxA != TreeIdxB) {
      if(Centroids[TreeIdxA].Deep > Centroids[TreeIdxB].Deep) {
        tie(TreeIdxA, TreeDepthA) = Centroids[TreeIdxA].Up();
      } else {
        tie(TreeIdxB, TreeDepthB) = Centroids[TreeIdxB].Up();
      }
    }
    if(TreeDepthA > TreeDepthB) swap(TreeDepthA, TreeDepthB);
    return (Centroids[TreeIdxA][TreeDepthA]);
  }

  inline virtual void query(int a, int b, const function< void(int, int, int) > &f)
  {
    int TreeIdxA, TreeDepthA, TreeIdxB, TreeDepthB;
    tie(TreeIdxA, TreeDepthA) = Information(a);
    tie(TreeIdxB, TreeDepthB) = Information(b);
    while(TreeIdxA != TreeIdxB) {
      if(Centroids[TreeIdxA].Deep > Centroids[TreeIdxB].Deep) {
        f(TreeIdxA, 0, TreeDepthA + 1);
        tie(TreeIdxA, TreeDepthA) = Centroids[TreeIdxA].Up();
      } else {
        f(TreeIdxB, 0, TreeDepthB + 1);
        tie(TreeIdxB, TreeDepthB) = Centroids[TreeIdxB].Up();
      }
    }
    if(TreeDepthA > TreeDepthB) swap(TreeDepthA, TreeDepthB);
    f(TreeIdxA, TreeDepthA + 1, TreeDepthB + 1);
  }

  CentroidPathDecomposition(int SZ)
  {
    graph.resize(SZ);
    SubTreeSize.assign(SZ, -1);
    NextPath.resize(SZ);
    TreeIndex.resize(SZ);
    TreeDepth.resize(SZ);
  }
};

const int mod = 1e9 + 7;

struct Matrix
{
  int a[2][2];

  Matrix operator+(const Matrix &kj)
  {
    Matrix ret;
    for(int i = 0; i < 2; i++) {
      for(int j = 0; j < 2; j++) {
        ret.a[i][j] = a[i][j] + kj.a[i][j];
        ret.a[i][j] %= mod;
      }
    }
    return (ret);
  }

  Matrix operator*(const Matrix &kj)
  {
    Matrix ret = Matrix::Zero();
    for(int i = 0; i < 2; i++) {
      for(int j = 0; j < 2; j++) {
        for(int k = 0; k < 2; k++) {
          ret.a[i][j] = (ret.a[i][j] + 1LL * a[i][k] * kj.a[k][j]) % mod;
        }
      }
    }
    return (ret);
  }

  Matrix operator^(int n)
  {
    Matrix ret = Matrix::I();
    Matrix x = *this;
    while(n > 0) {
      if(n & 1) (ret = ret * x);
      x = x * x;
      n >>= 1;
    }
    return (ret);
  }

  static Matrix Zero()
  {
    Matrix ret;
    memset(ret.a, 0, sizeof(ret.a));
    return (ret);
  }

  static Matrix I()
  {
    Matrix ret;
    memset(ret.a, 0, sizeof(ret.a));
    for(int i = 0; i < 2; i++) ret.a[i][i] = 1;
    return (ret);
  }
};

struct SegmentTree
{
  vector< Matrix > seg, add;
  int sz;

  SegmentTree(int n)
  {
    sz = 1;
    while(sz < n) sz <<= 1;
    seg.assign(2 * sz - 1, Matrix::I());
  }

  Matrix query(int a, int b, int k, int l, int r)
  {
    if(a >= r || b <= l) return (Matrix::I());
    if(a <= l && r <= b) return (seg[k]);
    Matrix L = query(a, b, 2 * k + 1, l, (l + r) >> 1);
    Matrix R = query(a, b, 2 * k + 2, (l + r) >> 1, r);
    return (L * R);
  }

  void update(int k, Matrix x)
  {
    k += sz - 1;
    seg[k] = x;
    while(k > 0) {
      k = (k - 1) >> 1;
      seg[k] = seg[2 * k + 1] * seg[2 * k + 2];
    }
  }

  Matrix query(int a, int b)
  {
    return (query(a, b, 0, 0, sz));
  }
};


int main()
{
  int N, X[100000], Y[100000];
  scanf("%d", &N);
  CentroidPathDecomposition g(N);
  for(int i = 1; i < N; i++) {
    scanf("%d %d", &X[i], &Y[i]);
    g.AddEdge(X[i], Y[i]);
  }
  g.Build();
  for(int i = 1; i < N; i++) {
    auto p = g.Information(X[i]);
    auto q = g.Information(Y[i]);
    if(p > q) swap(X[i], Y[i]);
  }
  vector< SegmentTree > segs;
  for(int i = 0; i < g.size(); i++) {
    segs.emplace_back(SegmentTree(g[i].size()));
  }
  int Q;
  scanf("%d", &Q);
  while(Q--) {
    char x;
    scanf(" %c", &x);
    if(x == 'x') {
      int v;
      scanf("%d", &v);
      Matrix m;
      scanf("%d %d %d %d", &m.a[0][0], &m.a[0][1], &m.a[1][0], &m.a[1][1]);
      auto p = g.Information(Y[v + 1]);
      segs[p.first].update(p.second, m);
    } else {
      int y, z;
      scanf("%d %d", &y, &z);
      Matrix mat = Matrix::I();
      g.query(y, z, [&](int a, int b, int c) { mat = segs[a].query(b, c) * mat; });
      printf("%d %d %d %d\n", mat.a[0][0], mat.a[0][1], mat.a[1][0], mat.a[1][1]);
    }
  }
}
0