結果
問題 | No.658 テトラナッチ数列 Hard |
ユーザー | pazzle1230 |
提出日時 | 2018-03-04 15:43:29 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 434 ms / 2,000 ms |
コード長 | 3,610 bytes |
コンパイル時間 | 1,478 ms |
コンパイル使用メモリ | 177,576 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-07-07 20:25:22 |
合計ジャッジ時間 | 4,218 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 1 ms
6,940 KB |
testcase_03 | AC | 3 ms
6,940 KB |
testcase_04 | AC | 155 ms
6,940 KB |
testcase_05 | AC | 178 ms
6,944 KB |
testcase_06 | AC | 227 ms
6,944 KB |
testcase_07 | AC | 244 ms
6,944 KB |
testcase_08 | AC | 291 ms
6,940 KB |
testcase_09 | AC | 432 ms
6,948 KB |
testcase_10 | AC | 434 ms
6,940 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define INF_LL (int64)1e18 #define INF (int32)1e9 #define REP(i, n) for(int i = 0;i < (n);i++) #define FOR(i, a, b) for(int i = (a);i < (b);i++) #define all(x) x.begin(),x.end() #define fs first #define sc second using int32 = int_fast32_t; using uint32 = uint_fast32_t; using int64 = int_fast64_t; using uint64 = uint_fast64_t; using PII = pair<int32, int32>; using PLL = pair<int64, int64>; const double eps = 1e-10; template<typename A, typename B>inline void chmin(A &a, B b){if(a > b) a = b;} template<typename A, typename B>inline void chmax(A &a, B b){if(a < b) a = b;} template<typename T> class Matrix{ private: using mat = vector<vector<T>>; const int64 mod = 17; mat m; public: uint32 col=-1, row=-1; Matrix(){} Matrix(mat&& m):m(m){ row = m.size(); col = m[0].size(); } Matrix(Matrix<T>&& rhs){ m = rhs.m; row = rhs.row; col = rhs.col;} Matrix(int32 row, int32 col, bool isIdentity=false):row(row),col(col){ m = mat(row, vector<T>(col, 0)); if(isIdentity && row == col){ for(int32 i = 0;i < row;i++) m[i][i] = 1; } } Matrix<T> pow(int64 x){ if(x == 0) return Matrix(row, col, 1); if(x&1) return (*this)*pow(x-1); Matrix<T> ret = pow(x/2); return ret*ret; } Matrix<T> operator+(const Matrix<T>& rhs){ Matrix<T> ret = *this; if(row != rhs.row || col != rhs.col){ cerr << "Error happened in operator+:the number of lhs's col & row is not the number of rhs's" << endl; exit(-1); } for(int32 i = 0;i < row;i++){ for(int32 j = 0;j < col;j++){ ret[i][j] = m[i][j]+rhs[i][j]; if(is_integral<T>::value) ret[i][j] %= mod; } } return ret; } Matrix<T> operator*(T x){ Matrix<T> ret = m; for(int32 i = 0;i < row;i++){ for(int32 j = 0;j < col;j++){ ret[i][j] = m[i][j]*x; if(is_integral<T>::value) ret[i][j] %= mod; } } return ret; } Matrix<T> operator*(const Matrix<T>& rhs){ Matrix<T> ret = mat(row, vector<T>(rhs.col, 0)); if(col != rhs.row){ cerr << "Error happened in operator*:the number of lhs's col is not the number of rhs's" << endl; exit(-1); } for(int32 i = 0;i < row;i++){ for(int32 j = 0;j < rhs.col;j++){ for(int32 k = 0;k < col;k++){ ret[i][j] = ret[i][j]+m[i][k]*rhs[k][j]; } if(is_integral<T>::value) ret[i][j] %= mod; } } return ret; } Matrix<T>& operator=(mat&& rhs){ m = rhs; row = rhs.size(); col = rhs[0].size(); return (*this);} Matrix<T>& operator=(Matrix&& rhs){ m = rhs.m; row = rhs.row; col = rhs.col; return (*this);} const vector<T>& operator[](int32 x) const{ return m[x];} vector<T>& operator[](int32 x){return m[x];} }; template<typename T> istream& operator>>(istream& is, Matrix<T>& m){ if(m.row == -1 || m.col == -1){ cerr << "The matrix is not available." << endl; return is; } for(int32 i = 0;i < m.row;i++) for(int32 j = 0;j < m.col;j++) is >> m[i][j]; return is; } template<typename T> ostream& operator<<(ostream&os, const Matrix<T>& m){ if(m.row == -1 || m.col == -1){ cerr << "The matrix is not available." << endl; return os; } for(int32 i = 0;i < m.row;i++){ for(int32 j = 0;j < m.col;j++) os << m[i][j] << " "; os << endl; } return os; } int main(void){ cin.tie(0); ios::sync_with_stdio(false); int32 Q; cin >> Q; Matrix<int64> base({ {1, 1, 1, 1}, {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0} }); Matrix<int64> st({ {1}, {0}, {0}, {0} }); REP(q, Q){ int64 n; cin >> n; if(n <= 3) cout << 0 << endl; else if(n == 4) cout << 1 << endl; else{ Matrix<int64> res = base.pow(n-4)*st; cout << res[0][0] << endl; } } }