結果

問題 No.376 立方体のN等分 (2)
ユーザー tancahn2380tancahn2380
提出日時 2018-09-08 16:31:50
言語 C++11
(gcc 11.4.0)
結果
WA  
実行時間 -
コード長 2,183 bytes
コンパイル時間 1,293 ms
コンパイル使用メモリ 169,856 KB
実行使用メモリ 14,016 KB
最終ジャッジ日時 2024-05-09 17:58:19
合計ジャッジ時間 8,037 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 1 ms
5,376 KB
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 AC 1 ms
5,376 KB
testcase_06 AC 1 ms
5,376 KB
testcase_07 WA -
testcase_08 TLE -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
testcase_34 -- -
testcase_35 -- -
testcase_36 -- -
testcase_37 -- -
testcase_38 -- -
testcase_39 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

# include "bits/stdc++.h"
using namespace std;
using LL = long long;
using ULL = unsigned long long;
const double PI = acos(-1);
template<class T>constexpr T INF() { return ::std::numeric_limits<T>::max(); }
template<class T>constexpr T HINF() { return INF<T>() / 2; }
template <typename T_char>T_char TL(T_char cX) { return tolower(cX); };
template <typename T_char>T_char TU(T_char cX) { return toupper(cX); };
const int vy[] = { -1, -1, -1, 0, 1, 1, 1, 0 }, vx[] = { -1, 0, 1, 1, 1, 0, -1, -1 };
const int dx[4] = { -1,0,1,0 }, dy[4] = { 0,-1,0,1 };
const char dir[4] = { 'u','l','d','r' };
int popcnt(unsigned long long n) { int cnt = 0; for (int i = 0; i < 64; i++)if ((n >> i) & 1)cnt++; return cnt; }
int d_sum(LL n) { int ret = 0; while (n > 0) { ret += n % 10; n /= 10; }return ret; }
int d_cnt(LL n) { int ret = 0; while (n > 0) { ret++; n /= 10; }return ret; }
LL gcd(LL a, LL b) { if (b == 0)return a; return gcd(b, a%b); };
LL lcm(LL a, LL b) { LL g = gcd(a, b); return a / g*b; };
# define ALL(qpqpq)           (qpqpq).begin(),(qpqpq).end()
# define UNIQUE(wpwpw)        (wpwpw).erase(unique(ALL((wpwpw))),(wpwpw).end())
# define LOWER(epepe)         transform(ALL((epepe)),(epepe).begin(),TL<char>)
# define UPPER(rprpr)         transform(ALL((rprpr)),(rprpr).begin(),TU<char>)
# define FOR(i,tptpt,ypypy)   for(LL i=(tptpt);i<(ypypy);i++)
# define REP(i,upupu)         FOR(i,0,upupu)
# define INIT                 std::ios::sync_with_stdio(false);std::cin.tie(0)
# pragma warning(disable:4996)

vector<LL> PrimeFact(LL n) {
	vector<LL> res;
	while (n != 1) {
		if (n == 2 || n == 3) {
			res.emplace_back(n); n /= n;
			continue;
		}
		bool prime_flag = false;
		for (int i = 2; i*i <= n; i++) {
			if (n%i == 0) {
				res.emplace_back(i); n /= i;
				prime_flag = true;
				break;
			}
		}
		if (!prime_flag) { res.emplace_back(n); n /= n; }
	}
	return res;
}

LL n;

int main() {
	cin >> n;
	vector<LL> v = PrimeFact(n);
	map<LL, int>mp;
	int cnt = 0;
	LL num = 0;
	REP(i, v.size()) {
		mp[v[i]]++;
		num += v[i] - 1;
	}
	for (auto a : mp) {
		cnt++;
	}
	if (cnt > 2) {
		cout << n - 1 << " " << n - 1 << endl;
	}
	else {
		cout << num << " " << n - 1 << endl;
	}
}
0