結果
| 問題 |
No.206 数の積集合を求めるクエリ
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2018-09-27 06:18:28 |
| 言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
| 結果 |
AC
|
| 実行時間 | 536 ms / 7,000 ms |
| コード長 | 8,960 bytes |
| コンパイル時間 | 1,598 ms |
| コンパイル使用メモリ | 122,480 KB |
| 実行使用メモリ | 17,648 KB |
| 最終ジャッジ日時 | 2024-10-12 04:25:01 |
| 合計ジャッジ時間 | 9,043 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 28 |
ソースコード
#include <iostream>
#include <fstream>
#include <iomanip>
#include <climits>
#include <limits>
#include <algorithm>
#include <array>
#include <vector>
#include <deque>
#include <queue>
#include <list>
#include <stack>
#include <string>
#include <functional>
#include <numeric>
#include <map>
#include <set>
#include <cstdlib>
#include <bitset>
#include <unordered_map>
#include <random>
#include <cmath>
#include <complex>
// #include "utiltime.hpp"
using namespace std;
typedef long long int ll;
typedef vector<int> vi;
typedef vector<vector<int>> vvi;
typedef pair<int, int> P;
typedef pair<ll, ll> Pll;
typedef vector<ll> vll;
typedef vector<vector<ll>> vvll;
typedef complex<double> cdouble;
const int INFL = (int)1e9;
const ll INFLL = (ll)1e18;
const double INFD = numeric_limits<double>::infinity();
const double PI = 3.14159265358979323846;
#define Loop(i, n) for(int i = 0; i < (int)n; i++)
#define Loopll(i, n) for(ll i = 0; i < (ll)n; i++)
#define Loop1(i, n) for(int i = 1; i <= (int)n; i++)
#define Loopll1(i, n) for(ll i = 1; i <= (ll)n; i++)
#define Loopr(i, n) for(int i = (int)n - 1; i >= 0; i--)
#define Looprll(i, n) for(ll i = (ll)n - 1; i >= 0; i--)
#define Loopr1(i, n) for(int i = (int)n; i >= 1; i--)
#define Looprll1(i, n) for(ll i = (ll)n; i >= 1; i--)
#define Loopitr(itr, container) for(auto itr = container.begin(); itr != container.end(); itr++)
#define printv(vector) Loop(i, vector.size()) { cout << vector[i] << " "; } cout << endl;
#define printmx(matrix) Loop(i, matrix.size()) { Loop(j, matrix[i].size()) { cout << matrix[i][j] << " "; } cout << endl; }
#define quickio() ios::sync_with_stdio(false); cin.tie(0);
#define readfile(filename) ifstream in(filename); cin.rdbuf(in.rdbuf());
#define bitmanip(m,val) static_cast<bitset<(int)m>>(val)
ll rndf(double x) { return (ll)(x + (x >= 0 ? 0.5 : -0.5)); }
ll floorsqrt(double x) { ll m = (ll)sqrt(x); return m + (m * m <= (ll)(x) ? 0 : -1); }
ll ceilsqrt(double x) { ll m = (ll)sqrt(x); return m + ((ll)x <= m * m ? 0 : 1); }
ll rnddiv(ll a, ll b) { return (a / b + (a % b * 2 >= b ? 1 : 0)); }
ll ceildiv(ll a, ll b) { return (a / b + (a % b == 0 ? 0 : 1)); }
ll gcd(ll m, ll n) { if (n == 0) return m; else return gcd(n, m % n); }
/*******************************************************/
namespace mod_op {
ll MOD = (ll)1e9 + 7;
class modll {
private:
ll val;
inline ll modify(ll x) { ll ret = x % MOD; if (ret < 0) ret += MOD; return ret; }
inline ll inv(ll x) {
if (x == 0) return 1 / x;
else if (x == 1) return 1;
else return modify(inv(MOD % x) * modify(-MOD / x));
}
public:
modll(ll init = 0) { val = modify(init); return; }
modll(const modll& another) { val = another.val; return; }
inline modll& operator=(const modll &another) { val = another.val; return *this; }
inline modll operator+(const modll &x) { return modify(val + x.val); }
inline modll operator-(const modll &x) { return modify(val - x.val); }
inline modll operator*(const modll &x) { return modify(val * x.val); }
inline modll operator/(const modll &x) { return modify(val * inv(x.val)); }
inline modll& operator+=(const modll &x) { val = modify(val + x.val); return *this; }
inline modll& operator-=(const modll &x) { val = modify(val - x.val); return *this; }
inline modll& operator*=(const modll &x) { val = modify(val * x.val); return *this; }
inline modll& operator/=(const modll &x) { val = modify(val * inv(x.val)); return *this; }
inline bool operator==(const modll &x) { return val == x.val; }
inline bool operator!=(const modll &x) { return val != x.val; }
friend inline istream& operator >> (istream &is, modll& x) { is >> x.val; return is; }
friend inline ostream& operator << (ostream &os, const modll& x) { os << x.val; return os; }
ll get_val() { return val; }
};
modll pow(modll n, ll p) {
modll ret;
if (p == 0) ret = 1;
else if (p == 1) ret = n;
else {
ret = pow(n, p / 2);
ret *= ret;
if (p % 2 == 1) ret *= n;
}
return ret;
}
vector<modll> facts;
inline void make_facts(int n) {
if (facts.empty()) facts.push_back(modll(1));
for (int i = (int)facts.size(); i <= n; ++i) facts.push_back(modll(facts.back() * (ll)i));
return;
}
vector<modll> ifacts;
vector<modll> invs;
inline void make_invs(int n) {
if (invs.empty()) {
invs.push_back(modll(0));
invs.push_back(modll(1));
}
for (int i = (int)invs.size(); i <= n; ++i) {
// because 0 = MOD = kq + r, 1/k = -q/r
invs.push_back(invs[(int)MOD % i] * ((int)MOD - (int)MOD / i));
}
return;
}
inline void make_ifacts(int n) {
make_invs(n);
if (ifacts.empty()) ifacts.push_back(modll(1));
for (int i = (int)ifacts.size(); i <= n; ++i) ifacts.push_back(modll(ifacts.back() * invs[i]));
return;
}
//nCr
modll combination(ll n, ll r) {
if (n >= r && r >= 0) {
modll ret;
make_facts((int)n);
make_ifacts((int)n);
ret = facts[(unsigned)n] * ifacts[(unsigned)r] * ifacts[(unsigned)(n - r)];
return ret;
}
else return 0;
}
modll get_fact(ll n) {
make_facts((int)n);
return facts[(int)n];
}
modll get_ifact(ll n) {
make_ifacts((int)n);
return ifacts[(int)n];
}
//log_a(b), if x does not exist, return -1
ll disc_log(modll a, modll b) {
ll ret = -1;
ll m = ceilsqrt(MOD);
unordered_map<ll, ll> mp;
modll x = 1;
Loop(i, m) {
mp[x.get_val()] = i;
x *= a;
}
x = modll(1) / pow(a, m);
modll k = b;
Loop(i, m) {
if (mp.find(k.get_val()) == mp.end()) k *= x;
else {
ret = i * m + mp[k.get_val()];
break;
}
}
return ret;
}
}
using namespace mod_op;
typedef vector<modll> vmodll;
typedef vector<vector<modll>> vvmodll;
namespace number_theoretic_transform {
ll mod_backup;
modll min_omega;
int min_omega_depth;
modll mod_half;
void make_base(int mode) {
mod_backup = MOD;
switch (mode) {
case 0:
MOD = 167772161;
min_omega = 17;
min_omega_depth = 25;
mod_half = 83886081;
break;
case 1:
MOD = 469762049;
min_omega = 30;
min_omega_depth = 26;
mod_half = 234881025;
break;
default:
MOD = 1224736769;
min_omega = 149;
min_omega_depth = 24;
mod_half = 612368385;
}
}
void recover_base() {
MOD = mod_backup;
}
vector<modll> omegas, iomegas;
inline int bit_reverse(int x, int digit) {
int ret = digit ? x & 1 : 0;
Loop(i, digit - 1) { ret <<= 1; x >>= 1; ret |= x & 1; }
return ret;
}
inline void make_omegas(int n) {
if (omegas.size() != n) {
omegas.resize(n);
modll omega = pow(min_omega, (1 << min_omega_depth) / n);
Loop(i, n) {
if (i == 0) omegas[i] = 1;
else omegas[i] = omegas[i - 1] * omega;
}
}
}
inline void make_iomegas(int n) {
if (iomegas.size() != n) {
iomegas.resize(n);
modll iomega = modll(1) / pow(min_omega, (1 << min_omega_depth) / n);
Loop(i, n) {
if (i == 0) iomegas[i] = 1;
else iomegas[i] = iomegas[i - 1] * iomega;
}
}
}
// a.size() should be 2^digit
vector<modll> NTT(const vector<modll> a, int mode = 0) {
int n = int(a.size());
int digit = int(rndf(log2(n)));
vector<modll> ret = a;
make_omegas(n);
Loop(i, n) {
int j = bit_reverse(i, digit);
if (j > i) swap(ret[i], ret[j]);
}
Loop(i, digit) {
int j = 0, m = 1 << i, mw = (digit - i - 1);
Loop(group_id, n >> (i + 1)) {
Loop(k, m) {
modll x = ret[j] + omegas[k << mw] * ret[j + m];
modll y = ret[j] - omegas[k << mw] * ret[j + m];
ret[j] = x; ret[j + m] = y;
++j;
}
j += m;
}
}
return ret;
}
// f.size() should be 2^digit
vector<modll> INTT(const vector<modll>& f, int mode = 0) {
int n = int(f.size());
int digit = int(rndf(log2(n)));
vector<modll> ret = f;
make_iomegas(n);
Loopr(i, digit) {
int j = 0, m = 1 << i, mw = (digit - i - 1);
Loop(group_id, n >> (i + 1)) {
Loop(k, m) {
modll q = (ret[j] + ret[j + m]) * mod_half;
modll r = (ret[j] - ret[j + m]) * mod_half * iomegas[k << mw];
ret[j] = q; ret[j + m] = r;
++j;
}
j += m;
}
}
Loop(i, n) {
int j = bit_reverse(i, digit);
if (j > i) swap(ret[i], ret[j]);
}
return ret;
}
// a.size() = b.size() should be 2^digit
vector<modll> mul_convolution(const vector<modll> &a, const vector<modll> &b) {
int n = int(a.size());
vector<modll> ret;
make_base(0);
vector<modll> g = NTT(a), h = NTT(b);
Loop(i, n) g[i] *= h[i];
ret = INTT(g);
recover_base();
return ret;
}
int legal_size_of(int n) {
int ret = 1 << (int)log2(n);
if (ret < n) ret <<= 1;
return ret;
}
}
using namespace number_theoretic_transform;
int main() {
quickio();
int L, M, N; cin >> L >> M >> N;
int n = legal_size_of(N * 2);
vector<modll> a(n, 0), b(n, 0);
Loop(i, L) {
int abuf; cin >> abuf;
abuf--;
a[N - 1 - abuf] = 1;
}
Loop(i, M) {
int bbuf; cin >> bbuf;
bbuf--;
b[bbuf] = 1;
}
vector<modll> c = mul_convolution(a, b);
int q; cin >> q;
reverse(c.begin(), c.begin() + N);
Loop(i, q) {
cout << c[i] << endl;
}
}