結果
| 問題 | No.776 A Simple RMQ Problem |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2018-12-23 02:41:51 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 7,246 bytes |
| 記録 | |
| コンパイル時間 | 2,107 ms |
| コンパイル使用メモリ | 212,796 KB |
| 最終ジャッジ日時 | 2025-01-06 19:56:14 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 17 WA * 9 |
ソースコード
#include <bits/stdc++.h>
#define show(x) std::cerr << #x << " = " << (x) << std::endl
using ll = long long;
using ull = unsigned long long;
using ld = long double;
constexpr ll MOD = 1000000007LL;
template <typename T>
constexpr T INF = std::numeric_limits<T>::max() / 10;
std::mt19937 mt{std::random_device{}()};
constexpr std::size_t PC(ull v) { return v = (v & 0x5555555555555555ULL) + (v >> 1 & 0x5555555555555555ULL), v = (v & 0x3333333333333333ULL) + (v >> 2 & 0x3333333333333333ULL), v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL, static_cast<std::size_t>(v * 0x0101010101010101ULL >> 56 & 0x7f); }
constexpr std::size_t LG(ull v) { return v == 0 ? 0 : (v--, v |= (v >> 1), v |= (v >> 2), v |= (v >> 4), v |= (v >> 8), v |= (v >> 16), v |= (v >> 32), PC(v)); }
constexpr ull SZ(const ull v) { return 1ULL << LG(v); }
template <typename Monoid>
class SegmentTree
{
public:
using BaseMonoid = Monoid;
using T = typename Monoid::T;
SegmentTree(const std::size_t n) : data_num(n), half(SZ(n)), value(half << 1, Monoid::id()) {}
template <typename InIt>
SegmentTree(const InIt first, const InIt last) : data_num(distance(first, last)), half(SZ(data_num)), value(half << 1, Monoid::id())
{
std::copy(first, last, value.begin() + half);
for (std::size_t i = half - 1; i >= 1; i--) { up(i); }
}
T get(const std::size_t a) const { return value[a + half]; }
void set(std::size_t a, const T& val)
{
value[a += half] = val;
while (a >>= 1) { up(a); }
}
T accumulate(std::size_t L, std::size_t R) const
{
T accl = Monoid::id(), accr = Monoid::id();
for (L += half, R += half; L < R; L >>= 1, R >>= 1) {
if (L & 1) { accl = acc(accl, value[L++]); }
if (R & 1) { accr = acc(value[--R], accr); }
}
return acc(accl, accr);
}
private:
void up(const std::size_t i) { value[i] = acc(value[i << 1], value[i << 1 | 1]); }
const std::size_t data_num, half;
std::vector<T> value;
const Monoid acc{};
};
template <typename Base>
class LazySegmentTree
{
public:
using BaseAlgebra = Base;
using ValMonoid = typename BaseAlgebra::ValMonoid;
using OpMonoid = typename BaseAlgebra::OpMonoid;
using T = typename BaseAlgebra::T;
using F = typename BaseAlgebra::OpMonoid::T;
LazySegmentTree(const std::size_t n) : data_num(n), half(SZ(n)), value(half << 1, ValMonoid::id()), action(half << 1, OpMonoid::id()) {}
template <typename InIt>
LazySegmentTree(const InIt first, const InIt last) : data_num(distance(first, last)), half(SZ(data_num)), value(half << 1, ValMonoid::id()), action(half << 1, OpMonoid::id())
{
copy(first, last, value.begin() + half);
for (std::size_t i = half - 1; i >= 1; i--) { up(i); }
}
T get(const std::size_t a) const { return accumulate(a, a + 1); }
T accumulate(const std::size_t L, const std::size_t R) const
{
auto arec = [&](auto&& self, const std::size_t index, const std::size_t left, const std::size_t right) -> T {
if (L <= left and right <= R) {
return value[index];
} else if (right <= L or R <= left) {
return ValMonoid::id();
} else {
return act(action[index], acc(self(self, index << 1, left, (left + right) >> 1), self(self, index << 1 | 1, (left + right) >> 1, right)));
}
};
return arec(arec, 1, 0, half);
}
void modify(const std::size_t L, const std::size_t R, const F& f)
{
auto mrec = [&](auto&& self, const std::size_t index, const std::size_t left, const std::size_t right) -> void {
if (L <= left and right <= R) {
this->update(index, f);
} else if (right <= L or R <= left) {
} else {
this->update(index << 1, action[index]), this->update(index << 1 | 1, action[index]);
self(self, index << 1, left, (left + right) >> 1), self(self, index << 1 | 1, (left + right) >> 1, right);
this->up(index), action[index] = OpMonoid::id();
}
};
mrec(mrec, 1, 0, half);
}
private:
void up(const std::size_t i) { value[i] = acc(value[i << 1], value[i << 1 | 1]); }
void update(const std::size_t i, const F& f) { value[i] = act(f, value[i]), action[i] = compose(f, action[i]); }
const std::size_t data_num, half;
std::vector<T> value;
std::vector<F> action;
const ValMonoid acc{};
const OpMonoid compose{};
const BaseAlgebra act{};
};
struct PreSuf
{
struct T
{
ll prefix = 0, suffix = 0, sum = 0, sub = 0;
};
T operator()(const T& a, const T& b) const
{
return T{
std::max(a.prefix, a.sum + b.prefix),
std::max(b.suffix, a.suffix + b.sum),
a.sum + b.sum,
std::max({a.prefix, a.sum + b.prefix, b.suffix, a.suffix + b.sum, a.sub, b.sub, a.suffix + b.prefix}),
};
}
static T id() { return T{0, 0, 0, 0}; }
};
struct Min_Plus
{
using T = ll;
struct ValMonoid
{
T operator()(const T& a, const T& b) const { return std::min(a, b); }
static constexpr T id() { return INF<T>; }
};
struct OpMonoid
{
using T = ll;
T operator()(const T& f1, const T& f2) const { return f1 + f2; }
static constexpr T id() { return 0; }
};
T operator()(const OpMonoid::T& f, const T& x) const { return f + x; }
};
int main()
{
std::cin.tie(0);
std::ios::sync_with_stdio(false);
int N, Q;
std::cin >> N >> Q;
std::vector<ll> a(N + 2, 0);
for (int i = 1; i <= N; i++) { std::cin >> a[i]; }
auto l = a, r = a;
for (int i = 1; i <= N + 1; i++) { l[i] += l[i - 1]; }
for (int i = N; i >= 0; i--) { r[i] += r[i + 1]; }
std::vector<PreSuf::T> v(N + 2, PreSuf::id());
for (int i = 1; i <= N; i++) { v[i] = PreSuf::T{a[i], a[i], a[i], a[i]}; }
SegmentTree<PreSuf> seg(v.begin(), v.end());
LazySegmentTree<Min_Plus> lseg(l.begin(), l.end());
LazySegmentTree<Min_Plus> rseg(r.begin(), r.end());
for (int q = 0; q < Q; q++) {
std::string s;
std::cin >> s;
if (s == "set") {
int i, x;
std::cin >> i >> x;
seg.set(i, PreSuf::T{x, x, x, x});
lseg.modify(i, N + 1, x - a[i]), rseg.modify(0, i + 1, x - a[i]), a[i] = x;
} else {
int l1, l2, r1, r2;
std::cin >> l1 >> l2 >> r1 >> r2, r1 = std::max(l1, r1), l2 = std::min(l2, r2);
if (l2 - 1 < r1 + 1) {
const ll lm = lseg.accumulate(l1 - 1, l2);
const ll rm = rseg.accumulate(r1 + 1, r2 + 2);
std::cout << lseg.get(N) - lm - rm << "\n";
} else {
const ll S = lseg.get(N);
const ll m1 = S - lseg.accumulate(l1 - 1, r1 + 1) - rseg.accumulate(r1 + 1, r2 + 2);
const ll m2 = S - lseg.accumulate(l1 - 1, l2) - rseg.accumulate(l2, r2 + 2);
const ll m3 = seg.accumulate(r1, l2 + 1).sub;
std::cout << std::max({m1, m2, m3}) << "\n";
}
}
// show(lseg), show(rseg);
}
return 0;
}