結果

問題 No.798 コレクション
ユーザー ei1333333ei1333333
提出日時 2019-03-15 21:43:07
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 5,473 bytes
コンパイル時間 2,488 ms
コンパイル使用メモリ 219,644 KB
実行使用メモリ 91,392 KB
最終ジャッジ日時 2024-07-01 20:38:12
合計ジャッジ時間 6,109 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
10,624 KB
testcase_01 AC 1 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 2 ms
5,376 KB
testcase_13 TLE -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>

using namespace std;

using int64 = long long;
const int mod = 1e9 + 7;
const int inf = (1 << 30) - 1;
const int64 infll = (1LL << 61) - 1;

struct IoSetup {
  IoSetup() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(10);
    cerr << fixed << setprecision(10);
  }
} iosetup;

template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
  for(int i = 0; i < (int) v.size(); i++) {
    os << v[i] << (i + 1 != v.size() ? " " : "");
  }
  return os;
}

template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
  for(T &in : v) is >> in;
  return is;
}

template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }

template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }

template< typename T = int64 >
vector< T > make_v(size_t a) {
  return vector< T >(a);
}

template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
  return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}

template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
  t = v;
}

template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
  for(auto &e : t) fill_v(e, v);
}

template< int mod >
struct Combination {
  vector< int64_t > mfact, rfact;

  Combination(int sz) : mfact(sz + 1), rfact(sz + 1) {
    mfact[0] = 1;
    for(int i = 1; i < mfact.size(); i++) {
      mfact[i] = mfact[i - 1] * i % mod;
    }
    rfact[sz] = inv(mfact[sz]);
    for(int i = sz - 1; i >= 0; i--) {
      rfact[i] = rfact[i + 1] * (i + 1) % mod;
    }
  }

  int64_t fact(int k) const {
    return (mfact[k]);
  }

  int64_t pow(int64_t x, int64_t n) const {
    int64_t ret = 1;
    while(n > 0) {
      if(n & 1) (ret *= x) %= mod;
      (x *= x) %= mod;
      n >>= 1;
    }
    return (ret);
  }

  int64_t inv(int64_t x) const {
    return (pow(x, mod - 2));
  }

  int64_t P(int n, int r) const {
    if(r < 0 || n < r) return (0);
    return (mfact[n] * rfact[n - r] % mod);
  }

  int64_t C(int p, int q) const {
    if(q < 0 || p < q) return (0);
    return (mfact[p] * rfact[q] % mod * rfact[p - q] % mod);
  }

  int64_t H(int n, int r) const {
    if(n < 0 || r < 0) return (0);
    return (r == 0 ? 1 : C(n + r - 1, r));
  }
};

template< typename flow_t, typename cost_t >
struct PrimalDual {
  const cost_t INF;

  struct edge {
    int to;
    flow_t cap;
    cost_t cost;
    int rev;
    bool isrev;
  };
  vector< vector< edge > > graph;
  vector< cost_t > potential, min_cost;
  vector< int > prevv, preve;

  PrimalDual(int V) : graph(V), INF(numeric_limits< cost_t >::max()) {}

  void add_edge(int from, int to, flow_t cap, cost_t cost) {
    graph[from].emplace_back((edge) {to, cap, cost, (int) graph[to].size(), false});
    graph[to].emplace_back((edge) {from, 0, -cost, (int) graph[from].size() - 1, true});
  }

  cost_t min_cost_flow(int s, int t, flow_t f) {
    int V = (int) graph.size();
    cost_t ret = 0;
    using Pi = pair< cost_t, int >;
    priority_queue< Pi, vector< Pi >, greater< Pi > > que;
    potential.assign(V, 0);
    preve.assign(V, -1);
    prevv.assign(V, -1);

    while(f > 0) {
      min_cost.assign(V, INF);
      que.emplace(0, s);
      min_cost[s] = 0;
      while(!que.empty()) {
        Pi p = que.top();
        que.pop();
        if(min_cost[p.second] < p.first) continue;
        for(int i = 0; i < graph[p.second].size(); i++) {
          edge &e = graph[p.second][i];
          cost_t nextCost = min_cost[p.second] + e.cost + potential[p.second] - potential[e.to];
          if(e.cap > 0 && min_cost[e.to] > nextCost) {
            min_cost[e.to] = nextCost;
            prevv[e.to] = p.second, preve[e.to] = i;
            que.emplace(min_cost[e.to], e.to);
          }
        }
      }
      if(min_cost[t] == INF) return -1;
      for(int v = 0; v < V; v++) potential[v] += min_cost[v];
      flow_t addflow = f;
      for(int v = t; v != s; v = prevv[v]) {
        addflow = min(addflow, graph[prevv[v]][preve[v]].cap);
      }
      f -= addflow;
      ret += addflow * potential[t];
      for(int v = t; v != s; v = prevv[v]) {
        edge &e = graph[prevv[v]][preve[v]];
        e.cap -= addflow;
        graph[v][e.rev].cap += addflow;
      }
    }
    return ret;
  }

  void output() {
    for(int i = 0; i < graph.size(); i++) {
      for(auto &e : graph[i]) {
        if(e.isrev) continue;
        auto &rev_e = graph[e.to][e.rev];
        cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << rev_e.cap + e.cap << ")" << endl;
      }
    }
  }
};


int main() {
  int N;
  cin >> N;
  deque< pair< int64, int64 > > A(N);

  int free = 0, d = 0;
  for(int i = 0; i < N; i++) {
    cin >> A[i].first >> A[i].second;
    if(i % 3 == 2) ++free;
    else ++d;
  }

  PrimalDual< int64, int64 > flow(N + d + 3);
  int S = N + d, T = N + d + 1;
  for(int i = 0; i < d; i++) {
    flow.add_edge(S, i, 1, 0);
  }
  for(int i = 0; i < d; i++) {
    for(int j = 0; j < N; j++) {
      flow.add_edge(i, d + j, 1, A[j].first + A[j].second * i);
    }
  }
  flow.add_edge(S, N + d + 2, free, 0);
  for(int j = 0; j < N; j++) {
    flow.add_edge(N + d + 2, d + j, 1, 0);
  }
  for(int j = 0; j < N; j++) {
    flow.add_edge(d + j, T, 1, 0);
  }
  cout << flow.min_cost_flow(S, T, N) << endl;
}




0