結果
| 問題 |
No.798 コレクション
|
| コンテスト | |
| ユーザー |
ei1333333
|
| 提出日時 | 2019-03-15 21:43:07 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 5,473 bytes |
| コンパイル時間 | 2,010 ms |
| コンパイル使用メモリ | 213,544 KB |
| 最終ジャッジ日時 | 2025-01-06 22:20:29 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 11 TLE * 12 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using int64 = long long;
const int mod = 1e9 + 7;
const int inf = (1 << 30) - 1;
const int64 infll = (1LL << 61) - 1;
struct IoSetup {
IoSetup() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
cerr << fixed << setprecision(10);
}
} iosetup;
template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
for(int i = 0; i < (int) v.size(); i++) {
os << v[i] << (i + 1 != v.size() ? " " : "");
}
return os;
}
template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
for(T &in : v) is >> in;
return is;
}
template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }
template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }
template< typename T = int64 >
vector< T > make_v(size_t a) {
return vector< T >(a);
}
template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}
template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
t = v;
}
template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
for(auto &e : t) fill_v(e, v);
}
template< int mod >
struct Combination {
vector< int64_t > mfact, rfact;
Combination(int sz) : mfact(sz + 1), rfact(sz + 1) {
mfact[0] = 1;
for(int i = 1; i < mfact.size(); i++) {
mfact[i] = mfact[i - 1] * i % mod;
}
rfact[sz] = inv(mfact[sz]);
for(int i = sz - 1; i >= 0; i--) {
rfact[i] = rfact[i + 1] * (i + 1) % mod;
}
}
int64_t fact(int k) const {
return (mfact[k]);
}
int64_t pow(int64_t x, int64_t n) const {
int64_t ret = 1;
while(n > 0) {
if(n & 1) (ret *= x) %= mod;
(x *= x) %= mod;
n >>= 1;
}
return (ret);
}
int64_t inv(int64_t x) const {
return (pow(x, mod - 2));
}
int64_t P(int n, int r) const {
if(r < 0 || n < r) return (0);
return (mfact[n] * rfact[n - r] % mod);
}
int64_t C(int p, int q) const {
if(q < 0 || p < q) return (0);
return (mfact[p] * rfact[q] % mod * rfact[p - q] % mod);
}
int64_t H(int n, int r) const {
if(n < 0 || r < 0) return (0);
return (r == 0 ? 1 : C(n + r - 1, r));
}
};
template< typename flow_t, typename cost_t >
struct PrimalDual {
const cost_t INF;
struct edge {
int to;
flow_t cap;
cost_t cost;
int rev;
bool isrev;
};
vector< vector< edge > > graph;
vector< cost_t > potential, min_cost;
vector< int > prevv, preve;
PrimalDual(int V) : graph(V), INF(numeric_limits< cost_t >::max()) {}
void add_edge(int from, int to, flow_t cap, cost_t cost) {
graph[from].emplace_back((edge) {to, cap, cost, (int) graph[to].size(), false});
graph[to].emplace_back((edge) {from, 0, -cost, (int) graph[from].size() - 1, true});
}
cost_t min_cost_flow(int s, int t, flow_t f) {
int V = (int) graph.size();
cost_t ret = 0;
using Pi = pair< cost_t, int >;
priority_queue< Pi, vector< Pi >, greater< Pi > > que;
potential.assign(V, 0);
preve.assign(V, -1);
prevv.assign(V, -1);
while(f > 0) {
min_cost.assign(V, INF);
que.emplace(0, s);
min_cost[s] = 0;
while(!que.empty()) {
Pi p = que.top();
que.pop();
if(min_cost[p.second] < p.first) continue;
for(int i = 0; i < graph[p.second].size(); i++) {
edge &e = graph[p.second][i];
cost_t nextCost = min_cost[p.second] + e.cost + potential[p.second] - potential[e.to];
if(e.cap > 0 && min_cost[e.to] > nextCost) {
min_cost[e.to] = nextCost;
prevv[e.to] = p.second, preve[e.to] = i;
que.emplace(min_cost[e.to], e.to);
}
}
}
if(min_cost[t] == INF) return -1;
for(int v = 0; v < V; v++) potential[v] += min_cost[v];
flow_t addflow = f;
for(int v = t; v != s; v = prevv[v]) {
addflow = min(addflow, graph[prevv[v]][preve[v]].cap);
}
f -= addflow;
ret += addflow * potential[t];
for(int v = t; v != s; v = prevv[v]) {
edge &e = graph[prevv[v]][preve[v]];
e.cap -= addflow;
graph[v][e.rev].cap += addflow;
}
}
return ret;
}
void output() {
for(int i = 0; i < graph.size(); i++) {
for(auto &e : graph[i]) {
if(e.isrev) continue;
auto &rev_e = graph[e.to][e.rev];
cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << rev_e.cap + e.cap << ")" << endl;
}
}
}
};
int main() {
int N;
cin >> N;
deque< pair< int64, int64 > > A(N);
int free = 0, d = 0;
for(int i = 0; i < N; i++) {
cin >> A[i].first >> A[i].second;
if(i % 3 == 2) ++free;
else ++d;
}
PrimalDual< int64, int64 > flow(N + d + 3);
int S = N + d, T = N + d + 1;
for(int i = 0; i < d; i++) {
flow.add_edge(S, i, 1, 0);
}
for(int i = 0; i < d; i++) {
for(int j = 0; j < N; j++) {
flow.add_edge(i, d + j, 1, A[j].first + A[j].second * i);
}
}
flow.add_edge(S, N + d + 2, free, 0);
for(int j = 0; j < N; j++) {
flow.add_edge(N + d + 2, d + j, 1, 0);
}
for(int j = 0; j < N; j++) {
flow.add_edge(d + j, T, 1, 0);
}
cout << flow.min_cost_flow(S, T, N) << endl;
}
ei1333333