結果

問題 No.274 The Wall
ユーザー sansaquasansaqua
提出日時 2019-09-17 23:25:10
言語 Common Lisp
(sbcl 2.3.8)
結果
MLE  
実行時間 -
コード長 8,142 bytes
コンパイル時間 663 ms
コンパイル使用メモリ 49,560 KB
実行使用メモリ 833,952 KB
最終ジャッジ日時 2023-09-21 20:23:21
合計ジャッジ時間 4,939 ms
ジャッジサーバーID
(参考情報)
judge15 / judge13
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 10 ms
23,964 KB
testcase_01 AC 10 ms
25,936 KB
testcase_02 AC 12 ms
26,236 KB
testcase_03 AC 725 ms
239,488 KB
testcase_04 AC 11 ms
23,900 KB
testcase_05 AC 9 ms
24,148 KB
testcase_06 AC 9 ms
23,892 KB
testcase_07 AC 8 ms
23,896 KB
testcase_08 AC 8 ms
23,932 KB
testcase_09 AC 9 ms
23,892 KB
testcase_10 AC 10 ms
23,940 KB
testcase_11 MLE -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
権限があれば一括ダウンロードができます
コンパイルメッセージ
; compiling file "/home/judge/data/code/Main.lisp" (written 21 SEP 2023 08:23:15 PM):
; processing (SB-INT:DEFCONSTANT-EQX OPT ...)
; processing (SET-DISPATCH-MACRO-CHARACTER #\# ...)
; processing (DISABLE-DEBUGGER)
; processing (DEFMACRO DEFINE-INT-TYPES ...)
; processing (DEFINE-INT-TYPES 2 ...)
; processing (DEFSTRUCT (DISJOINT-SET # ...) ...)
; processing (DECLAIM (FTYPE # ...))
; processing (DEFUN DS-ROOT ...)
; processing (DECLAIM (INLINE DS-UNITE!))
; processing (DEFUN DS-UNITE! ...)
; processing (DECLAIM (INLINE DS-CONNECTED-P))
; processing (DEFUN DS-CONNECTED-P ...)
; processing (DECLAIM (FTYPE # ...))
; processing (DEFUN READ-FIXNUM ...)
; processing (DEFSTRUCT (SCC #) ...)
; processing (DECLAIM (INLINE %MAKE-REVGRAPH))
; processing (DEFUN %MAKE-REVGRAPH ...)
; processing (DEFUN MAKE-SCC ...)
; processing (DEFMACRO DBG ...)
; processing (DECLAIM (INLINE PRINTLN))
; processing (DEFUN PRINTLN ...)
; processing (DEFCONSTANT +MOD+ ...)
; processing (DEFUN MAIN ...)
; file: /home/judge/data/code/Main.lisp
; in: DEFUN MAIN
;     (+ J (* 2 N))
; 
; note: doing signed word to integer coercion (cost 20), for:
;       the first result of inline (signed-byte 64) arithmetic
; 
; note: doing signed word to integer coercion (cost 20), for:
;       the first result of inline (signed-byte 64) arithmetic

; processing (MAIN); 
; compilation unit finished
;   printed 2 notes


; wrote /home/judge/data/code/Main.fasl
; compilation finished in 0:00:00.205

ソースコード

diff #

;; -*- coding: utf-8 -*-
(eval-when (:compile-toplevel :load-toplevel :execute)
  (sb-int:defconstant-eqx OPT
    #+swank '(optimize (speed 3) (safety 2))
    #-swank '(optimize (speed 3) (safety 0) (debug 0))
    #'equal)
  #+swank (ql:quickload '(:cl-debug-print :fiveam) :silent t)
  #-swank (set-dispatch-macro-character
           #\# #\> (lambda (s c p) (declare (ignore c p)) (read s nil nil t))))
#+swank (cl-syntax:use-syntax cl-debug-print:debug-print-syntax)
#-swank (disable-debugger) ; for CS Academy

;; BEGIN_INSERTED_CONTENTS
(defmacro define-int-types (&rest bits)
  `(progn
     ,@(mapcar (lambda (b) `(deftype ,(intern (format nil "UINT~A" b)) () '(unsigned-byte ,b))) bits)
     ,@(mapcar (lambda (b) `(deftype ,(intern (format nil "INT~A" b)) () '(signed-byte ,b))) bits)))
(define-int-types 2 4 7 8 15 16 31 32 62 63 64)

;;;
;;; Disjoint set by Union-Find algorithm
;;;

(defstruct (disjoint-set
            (:constructor make-disjoint-set
                (size &aux (data (make-array size :element-type 'int32 :initial-element -1))))
            (:conc-name ds-))
  (data nil :type (simple-array int32 (*))))

(declaim (ftype (function * (values (mod #.array-total-size-limit) &optional)) ds-root))
(defun ds-root (x disjoint-set)
  "Returns the root of X."
  (declare #.OPT
           ((mod #.array-total-size-limit) x))
  (let ((data (ds-data disjoint-set)))
    (if (< (aref data x) 0)
        x
        (setf (aref data x)
              (ds-root (aref data x) disjoint-set)))))

(declaim (inline ds-unite!))
(defun ds-unite! (x1 x2 disjoint-set)
  "Destructively unites X1 and X2 and returns true iff X1 and X2 become
connected for the first time."
  (let ((root1 (ds-root x1 disjoint-set))
        (root2 (ds-root x2 disjoint-set)))
    (unless (= root1 root2)
      (let ((data (ds-data disjoint-set)))
        ;; ensure the size of root1 >= the size of root2
        (when (> (aref data root1) (aref data root2))
          (rotatef root1 root2))
        (incf (aref data root1) (aref data root2))
        (setf (aref data root2) root1)))))

(declaim (inline ds-connected-p))
(defun ds-connected-p (x1 x2 disjoint-set)
  "Returns true iff X1 and X2 have the same root."
  (= (ds-root x1 disjoint-set) (ds-root x2 disjoint-set)))

(declaim (ftype (function * (values fixnum &optional)) read-fixnum))
(defun read-fixnum (&optional (in *standard-input*))
  (declare #.OPT)
  (macrolet ((%read-byte ()
               `(the (unsigned-byte 8)
                     #+swank (char-code (read-char in nil #\Nul))
                     #-swank (sb-impl::ansi-stream-read-byte in nil #.(char-code #\Nul) nil))))
    (let* ((minus nil)
           (result (loop (let ((byte (%read-byte)))
                           (cond ((<= 48 byte 57)
                                  (return (- byte 48)))
                                 ((zerop byte) ; #\Nul
                                  (error "Read EOF or #\Nul."))
                                 ((= byte #.(char-code #\-))
                                  (setf minus t)))))))
      (declare ((integer 0 #.most-positive-fixnum) result))
      (loop
        (let* ((byte (%read-byte)))
          (if (<= 48 byte 57)
              (setq result (+ (- byte 48)
                              (* 10 (the (integer 0 #.(floor most-positive-fixnum 10)) result))))
              (return (if minus (- result) result))))))))

;;;
;;; Strongly connected components of directed graph
;;;

(defstruct (scc (:constructor %make-scc (graph revgraph posts components sizes count)))
  (graph nil :type (simple-array list (*)))
  ;; reversed graph
  (revgraph nil :type (simple-array list (*)))
  ;; vertices by post-order DFS
  posts
  ;; components[i] := strongly connected component of the i-th vertex
  (components nil :type (simple-array (unsigned-byte 32) (*)))
  ;; sizes[k] := size of the k-th strongly connected component
  (sizes nil :type (simple-array (unsigned-byte 32) (*)))
  ;; the total number of strongly connected components
  (count 0 :type (unsigned-byte 32)))

(declaim (inline %make-revgraph))
(defun %make-revgraph (graph)
  (let* ((n (length graph))
         (revgraph (make-array n :element-type 'list :initial-element nil)))
    (dotimes (i n)
      (dolist (dest (aref graph i))
        (push i (aref revgraph dest))))
    revgraph))

(defun make-scc (graph &optional revgraph)
  "GRAPH := vector of adjacency lists
REVGRAPH := NIL | reversed graph of GRAPH"
  (declare #.OPT
           ((simple-array list (*)) graph)
           ((or null (simple-array list (*))) revgraph))
  (let* ((revgraph (or revgraph (%make-revgraph graph)))
         (n (length graph))
         (visited (make-array n :element-type 'bit :initial-element 0))
         (posts (make-array n :element-type '(unsigned-byte 32)))
         (components (make-array n :element-type '(unsigned-byte 32)))
         (sizes (make-array n :element-type '(unsigned-byte 32)
                            :initial-element 0))
         (pointer 0)
         (ord 0) ; ordinal number for a strongly connected component
         )
    (declare ((unsigned-byte 32) pointer ord))
    (assert (= n (length revgraph)))
    (labels ((dfs (v)
               (setf (aref visited v) 1)
               (dolist (neighbor (aref graph v))
                 (when (zerop (aref visited neighbor))
                   (dfs neighbor)))
               (setf (aref posts pointer) v)
               (incf pointer))
             (reversed-dfs (v ord)
               (setf (aref visited v) 1
                     (aref components v) ord)
               (incf (aref sizes ord))
               (dolist (neighbor (aref revgraph v))
                 (when (zerop (aref visited neighbor))
                   (reversed-dfs neighbor ord)))))
      (dotimes (v n)
        (when (zerop (aref visited v))
          (dfs v)))
      (fill visited 0)
      (loop for i from (- n 1) downto 0
            for v = (aref posts i)
            when (zerop (aref visited v))
            do (reversed-dfs v ord)
               (incf ord))
      (%make-scc graph revgraph posts components sizes ord))))

(defmacro dbg (&rest forms)
  #+swank
  (if (= (length forms) 1)
      `(format *error-output* "~A => ~A~%" ',(car forms) ,(car forms))
      `(format *error-output* "~A => ~A~%" ',forms `(,,@forms)))
  #-swank (declare (ignore forms)))

(declaim (inline println))
(defun println (obj &optional (stream *standard-output*))
  (let ((*read-default-float-format* 'double-float))
    (prog1 (princ obj stream) (terpri stream))))

(defconstant +mod+ 1000000007)

;;;
;;; Body
;;;

(defun main ()
  (declare #.OPT)
  (let* ((n (read))
         (m (read))
         (dset (make-disjoint-set (+ n n m)))
         (graph (make-array (* 4 n) :element-type 'list :initial-element nil)))
    (declare (uint16 n m))
    (dotimes (i n)
      (let* ((l (read-fixnum))
             (r (read-fixnum)))
        (loop for j from l to r
              do (ds-unite! i (+ j (* 2 n)) dset))
        (loop for j from (- m r 1) to (- m l 1)
              do (ds-unite! (+ i n) (+ j (* 2 n)) dset))))
    (labels ((negate (x)
               (declare (uint16 x))
               (mod (+ x (* 2 n)) (* 4 n)))
             (add-clause! (literal1 literal2 bool1 bool2)
               (unless bool1
                 (setq literal1 (negate literal1)))
               (unless bool2
                 (setq literal2 (negate literal2)))
               (push literal2 (aref graph (negate literal1)))
               (push literal1 (aref graph (negate literal2)))))
      (gc)
      (dotimes (x (* 2 n))
        (loop for y from (+ x 1) below (* 2 n)
              do (when (and (ds-connected-p x y dset)
                            (/= (+ x n) y))
                   (add-clause! x y nil nil))))
      (dotimes (x n)
        (add-clause! x (+ x n) t t)
        (add-clause! x (+ x n) nil nil))
      (let* ((scc (make-scc graph))
             (comps (scc-components scc)))
        (write-line
         (if (loop for x below (* 2 n)
                   thereis (= (aref comps x)
                              (aref comps (+ x (* 2 n)))))
             "NO"
             "YES"))))))

#-swank (main)
0