結果

問題 No.274 The Wall
ユーザー sansaquasansaqua
提出日時 2019-09-18 00:23:20
言語 Common Lisp
(sbcl 2.3.8)
結果
MLE  
実行時間 -
コード長 6,927 bytes
コンパイル時間 223 ms
コンパイル使用メモリ 50,704 KB
実行使用メモリ 832,460 KB
最終ジャッジ日時 2024-07-07 14:00:50
合計ジャッジ時間 4,255 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 10 ms
27,300 KB
testcase_01 AC 11 ms
27,304 KB
testcase_02 AC 11 ms
29,520 KB
testcase_03 AC 581 ms
243,368 KB
testcase_04 AC 11 ms
27,176 KB
testcase_05 AC 11 ms
31,288 KB
testcase_06 AC 11 ms
29,520 KB
testcase_07 AC 11 ms
27,180 KB
testcase_08 AC 10 ms
27,436 KB
testcase_09 AC 11 ms
27,560 KB
testcase_10 AC 11 ms
27,300 KB
testcase_11 MLE -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
権限があれば一括ダウンロードができます
コンパイルメッセージ
; compiling file "/home/judge/data/code/Main.lisp" (written 07 JUL 2024 02:00:45 PM):

; wrote /home/judge/data/code/Main.fasl
; compilation finished in 0:00:00.061

ソースコード

diff #

;; -*- coding: utf-8 -*-
(eval-when (:compile-toplevel :load-toplevel :execute)
  (sb-int:defconstant-eqx OPT
    #+swank '(optimize (speed 3) (safety 2))
    #-swank '(optimize (speed 3) (safety 0) (debug 0))
    #'equal)
  #+swank (ql:quickload '(:cl-debug-print :fiveam) :silent t)
  #-swank (set-dispatch-macro-character
           #\# #\> (lambda (s c p) (declare (ignore c p)) (read s nil nil t))))
#+swank (cl-syntax:use-syntax cl-debug-print:debug-print-syntax)
#-swank (disable-debugger) ; for CS Academy

;; BEGIN_INSERTED_CONTENTS
(defmacro define-int-types (&rest bits)
  `(progn
     ,@(mapcar (lambda (b) `(deftype ,(intern (format nil "UINT~A" b)) () '(unsigned-byte ,b))) bits)
     ,@(mapcar (lambda (b) `(deftype ,(intern (format nil "INT~A" b)) () '(signed-byte ,b))) bits)))
(define-int-types 2 4 7 8 15 16 31 32 62 63 64)

(declaim (ftype (function * (values fixnum &optional)) read-fixnum))
(defun read-fixnum (&optional (in *standard-input*))
  (declare #.OPT)
  (macrolet ((%read-byte ()
               `(the (unsigned-byte 8)
                     #+swank (char-code (read-char in nil #\Nul))
                     #-swank (sb-impl::ansi-stream-read-byte in nil #.(char-code #\Nul) nil))))
    (let* ((minus nil)
           (result (loop (let ((byte (%read-byte)))
                           (cond ((<= 48 byte 57)
                                  (return (- byte 48)))
                                 ((zerop byte) ; #\Nul
                                  (error "Read EOF or #\Nul."))
                                 ((= byte #.(char-code #\-))
                                  (setf minus t)))))))
      (declare ((integer 0 #.most-positive-fixnum) result))
      (loop
        (let* ((byte (%read-byte)))
          (if (<= 48 byte 57)
              (setq result (+ (- byte 48)
                              (* 10 (the (integer 0 #.(floor most-positive-fixnum 10)) result))))
              (return (if minus (- result) result))))))))

;;;
;;; Strongly connected components of directed graph
;;;

(defstruct (scc (:constructor %make-scc (graph revgraph posts components count)))
  (graph nil :type (simple-array list (*)))
  ;; reversed graph
  (revgraph nil :type (simple-array list (*)))
  ;; vertices by post-order DFS
  posts
  ;; components[i] := strongly connected component of the i-th vertex
  (components nil :type (simple-array (unsigned-byte 31) (*)))
  ;; the total number of strongly connected components
  (count 0 :type (unsigned-byte 31)))

(declaim (inline %make-revgraph))
(defun %make-revgraph (graph)
  (let* ((n (length graph))
         (revgraph (make-array n :element-type 'list :initial-element nil)))
    (dotimes (i n)
      (dolist (dest (aref graph i))
        (push i (aref revgraph dest))))
    revgraph))

(defun make-scc (graph &optional revgraph)
  "GRAPH := vector of adjacency lists
REVGRAPH := NIL | reversed graph of GRAPH"
  (declare #.OPT
           ((simple-array list (*)) graph)
           ((or null (simple-array list (*))) revgraph))
  (let* ((revgraph (or revgraph (%make-revgraph graph)))
         (n (length graph))
         (visited (make-array n :element-type 'bit :initial-element 0))
         (posts (make-array n :element-type '(unsigned-byte 31)))
         (components (make-array n :element-type '(unsigned-byte 31)))
         (pointer 0)
         (ord 0) ; ordinal number for a strongly connected component
         )
    (declare ((unsigned-byte 31) pointer ord))
    (labels ((dfs (v)
               (setf (aref visited v) 1)
               (dolist (neighbor (aref graph v))
                 (when (zerop (aref visited neighbor))
                   (dfs neighbor)))
               (setf (aref posts pointer) v)
               (incf pointer))
             (reversed-dfs (v ord)
               (setf (aref visited v) 1
                     (aref components v) ord)
               (dolist (neighbor (aref revgraph v))
                 (when (zerop (aref visited neighbor))
                   (reversed-dfs neighbor ord)))))
      (dotimes (v n)
        (when (zerop (aref visited v))
          (dfs v)))
      (fill visited 0)
      (loop for i from (- n 1) downto 0
            for v = (aref posts i)
            when (zerop (aref visited v))
            do (reversed-dfs v ord)
               (incf ord))
      (%make-scc graph revgraph posts components ord))))

(defmacro dbg (&rest forms)
  #+swank
  (if (= (length forms) 1)
      `(format *error-output* "~A => ~A~%" ',(car forms) ,(car forms))
      `(format *error-output* "~A => ~A~%" ',forms `(,,@forms)))
  #-swank (declare (ignore forms)))

(declaim (inline println))
(defun println (obj &optional (stream *standard-output*))
  (let ((*read-default-float-format* 'double-float))
    (prog1 (princ obj stream) (terpri stream))))

(defconstant +mod+ 1000000007)

;;;
;;; Body
;;;

(defun main ()
  (declare #.OPT)
  (let* ((n (read))
         (m (read))
         (ls (make-array (* 2 n) :element-type 'uint16))
         (rs (make-array (* 2 n) :element-type 'uint16))
         (graph (make-array (* 4 n) :element-type 'list :initial-element nil))
         ;; (revgraph (make-array (* 4 n) :element-type 'list :initial-element nil))
         (4n (* 4 n)))
    (declare (uint16 n m))
    (dotimes (i n)
      (let* ((l (read-fixnum))
             (r (read-fixnum)))
        (declare (uint16 l r))
        (setf (aref ls i) l
              (aref rs i) r
              (aref ls (+ i n)) (- m r 1)
              (aref rs (+ i n)) (- m l 1))))
    (labels ((overlap-p (x y)
               (let ((l1 (aref ls x))
                     (r1 (aref rs x))
                     (l2 (aref ls y))
                     (r2 (aref rs y)))
                 (not (or (< r1 l2) (< r2 l1)))))
             (negate (x)
               (declare (uint16 x))
               (let ((res (+ x (* 2 n))))
                 (if (>= res 4n)
                     (- res 4n)
                     res)))
             (add-clause! (literal1 literal2 bool1 bool2)
               (unless bool1
                 (setq literal1 (negate literal1)))
               (unless bool2
                 (setq literal2 (negate literal2)))
               (push literal2 (aref graph (negate literal1)))
               (push literal1 (aref graph (negate literal2)))))
      (declare (inline negate overlap-p))
      (gc :full t)
      (dotimes (x (* 2 n))
        (loop for y from (+ x 1) below (* 2 n)
              do (when (and (/= (+ x n) y)
                            (overlap-p x y))
                   (add-clause! x y nil nil))))
      (dotimes (x n)
        (add-clause! x (+ x n) t t)
        (add-clause! x (+ x n) nil nil))
      (let* ((scc (make-scc graph))
             (comps (scc-components scc)))
        (write-line
         (if (loop for x below (* 2 n)
                   thereis (= (aref comps x)
                              (aref comps (+ x (* 2 n)))))
             "NO"
             "YES"))))))

#-swank (main)
0