結果
問題 | No.529 帰省ラッシュ |
ユーザー | toma |
提出日時 | 2019-10-08 00:48:30 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 9,203 bytes |
コンパイル時間 | 2,585 ms |
コンパイル使用メモリ | 211,996 KB |
実行使用メモリ | 38,504 KB |
最終ジャッジ日時 | 2024-10-15 13:14:15 |
合計ジャッジ時間 | 6,982 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
ソースコード
#include"bits/stdc++.h" using namespace std; #define REP(k,m,n) for(int (k)=(m);(k)<(n);(k)++) #define rep(i,n) REP((i),0,(n)) using ll = long long; using Graph = vector<vector<int>>; struct LowLink { vector<int> articulation; vector<pair<int, int>> bridge; LowLink(const Graph& g) :g(g) {} virtual void build() { const int N = g.size(); used.assign(N, 0); ord.assign(N, 0); low.assign(N, 0); int k = 0; rep(i, N)if (!used[i])k = dfs(i, k, -1); } protected: const Graph& g; vector<int> used, ord, low; int dfs(int idx, int k, int par) { used[idx] = true; ord[idx] = k++; low[idx] = ord[idx]; bool is_articulation = false; int cnt = 0; for (const auto& to : g[idx]) { if (!used[to]) { ++cnt; k = dfs(to, k, idx); low[idx] = min(low[idx], low[to]); is_articulation |= ~par && low[to] >= ord[idx]; if (ord[idx] < low[to])bridge.emplace_back(minmax(idx, to)); } else if (to != par) { low[idx] = min(low[idx], ord[to]); } } is_articulation |= par == -1 && cnt > 1; if (is_articulation) { articulation.push_back(idx); } return k; } }; class UnionFind { public: vector<int>rank, parent; //初期化 UnionFind(int size) { rank.resize(size, 0); parent.resize(size, 0); rep(i, size)parent[i] = i; } //木の根を求める int find(int x) { if (parent[x] == x)return x; else return parent[x] = find(parent[x]); } //xとyの属する集合を併合 void unite(int x, int y) { x = find(x); y = find(y); if (x == y)return; if (rank[x] < rank[y]) parent[x] = y; else { parent[y] = x; if (rank[x] == rank[y])rank[x]++; } } //xとyが同じ集合に属するか否か bool same(int x, int y) { return (find(x) == find(y)); } }; struct TwoEdgeConnectedComponents { /* 二重辺連結成分分解 * 依存 * - LowLink * - UnionFind */ vector<int> trans; // index -> new index (clustered) vector<vector<int>> ngraph; // new index -> new edges (clustered) TwoEdgeConnectedComponents(Graph& old_graph) { const int N = old_graph.size(); auto edges = rebuild_edges(old_graph); auto bridges = get_bridge(old_graph); auto uf = make_uf(N, edges, bridges); trans = make_trans(N, uf); ngraph = create_ngraph(bridges, trans); } private: set<pair<int, int>> rebuild_edges(const Graph& graph) { set<pair<int, int>> res; rep(i, graph.size()) for (int j : graph[i]) if (i < j) res.emplace(i, j); return res; } set<pair<int, int>> get_bridge(const Graph& graph) { LowLink lowlink(graph); lowlink.build(); set<pair<int, int>> bridges; for (auto& bridge : lowlink.bridge) { if (bridge.first > bridge.second) { swap(bridge.first, bridge.second); } bridges.insert(bridge); } return bridges; } UnionFind make_uf( const int N, const set<pair<int, int>>& edges, const set<pair<int, int>>& bridges ) { UnionFind uf(N); for (const auto& edge : edges) { if (bridges.find(edge) != bridges.end())continue; uf.unite(edge.first, edge.second); } return uf; } vector<int> make_trans( const int N, UnionFind& uf ) { int cnt = 0; set<int> st; map<int, int> mp; rep(i, N)st.insert(uf.find(i)); for (int num : st)mp[num] = cnt++; vector<int> trans; rep(i, N)trans.push_back(mp[uf.find(i)]); return trans; } vector<vector<int>> create_ngraph( const set<pair<int, int>>& bridges, const vector<int>& trans ) { const int M = *max_element(trans.begin(), trans.end()) + 1; vector<vector<int>> ngraph(M); for (const auto& bridge : bridges) { int l = trans[bridge.first]; int r = trans[bridge.second]; ngraph[l].push_back(r); ngraph[r].push_back(l); } return ngraph; } }; class SegmentTree { private: int n; // 横幅 vector<set<int>> data; map<int, int> val2idx; public: // init忘れに注意 SegmentTree() {} void init(int n_) { n = 1; while (n < n_)n <<= 1; data.assign(n << 1, set<int>()); } void add_val(int idx, const int val) { val2idx[val] = idx; idx += n; do { data[idx].insert(val); } while (idx >>= 1); } void erase_val(const int val) { assert(val2idx.find(val) != val2idx.end()); int idx = val2idx[val]; idx += n; do { data[idx].erase(val); } while (idx >>= 1); } int query(int a, int b) { // [a,b) int vl = 0, vr = 0; for (int l = a + n, r = b + n; l < r; l >>= 1, r >>= 1) { if (l & 1) { if (!data[l].empty()) { vl = max(vl, *(--data[l].end())); } l++; } if (r & 1) { --r; if (!data[r].empty()) { vr = max(*(--data[r].end()), vr); } } } return max(vl, vr); } }; struct HLDecomposition { using pii = pair<int, int>; int n; Graph G; vector<int> vid, inv, par, depth, subsize, head, prev, next, type; HLDecomposition(const Graph& G_) : n(G_.size()), G(G_), vid(n, -1), inv(n), par(n), depth(n), subsize(n, 1), head(n), prev(n, -1), next(n, -1), type(n) {} void build(vector<int> roots = { 0 }) { int curtype = 0, pos = 0; for (int root : roots) { decide_heavy_edge(root); reconstruct(root, curtype++, pos); } } void decide_heavy_edge(int root) { stack<pii> st; par[root] = -1, depth[root] = 0; st.emplace(root, 0); while (!st.empty()) { int now = st.top().first; int& way = st.top().second; if (way < G[now].size()) { int child = G[now][way++]; if (child == par[now])continue; par[child] = now; depth[child] = depth[now] + 1; st.emplace(child, 0); } else { st.pop(); int maxsize = 0; for (auto child : G[now]) { if (child == par[now])continue; subsize[now] += subsize[child]; if (maxsize < subsize[child]) { maxsize = subsize[child]; prev[child] = now; next[now] = child; } } } } } void reconstruct(int root, int curtype, int& pos) { stack<int> st({ root }); while (!st.empty()) { int start = st.top(); st.pop(); for (int v = start; v != -1; v = next[v]) { type[v] = curtype; vid[v] = pos++; inv[vid[v]] = v; head[v] = start; for (auto child : G[v]) { if (child != par[v] && child != next[v]) { st.push(child); } } } } } // node query [u, v], f([left, right]) void foreach_nodes(int u, int v, const function<void(int, int)>& f) { while (true) { if (vid[u] > vid[v])swap(u, v); f(max(vid[head[v]], vid[u]), vid[v]); if (head[u] != head[v])v = par[head[v]]; else break; } } // edge query[u,v] f([left, right]) // seg_node[vid[i]] := edge(par[i] -> i) void foreach_edges(int u, int v, const function<void(int, int)>& f) { while (true) { if (vid[u] > vid[v])swap(u, v); if (head[u] != head[v]) { f(vid[head[v]], vid[v]); v = par[head[v]]; } else { if (u != v)f(vid[u] + 1, vid[v]); break; } } } int lca(int u, int v) { while (true) { if (vid[u] > vid[v])swap(u, v); if (head[u] == head[v])return u; v = par[head[v]]; } } }; int main() { int N, M, Q; cin >> N >> M >> Q; Graph graph(N); rep(i, M) { int a, b; cin >> a >> b; a--; b--; graph[a].push_back(b); graph[b].push_back(a); } TwoEdgeConnectedComponents tecc(graph); const auto& trans = tecc.trans; const auto& ngraph = tecc.ngraph; HLDecomposition hld(ngraph); hld.build(); return 0; }