結果
問題 |
No.807 umg tours
|
ユーザー |
|
提出日時 | 2020-01-22 23:23:14 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 428 ms / 4,000 ms |
コード長 | 4,324 bytes |
コンパイル時間 | 2,323 ms |
コンパイル使用メモリ | 214,172 KB |
最終ジャッジ日時 | 2025-01-08 20:29:41 |
ジャッジサーバーID (参考情報) |
judge1 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 26 |
ソースコード
#include <bits/stdc++.h> #define LLI long long int #define FOR(v, a, b) for(LLI v = (a); v < (b); ++v) #define FORE(v, a, b) for(LLI v = (a); v <= (b); ++v) #define REP(v, n) FOR(v, 0, n) #define REPE(v, n) FORE(v, 0, n) #define REV(v, a, b) for(LLI v = (a); v >= (b); --v) #define ALL(x) (x).begin(), (x).end() #define RALL(x) (x).rbegin(), (x).rend() #define ITR(it, c) for(auto it = (c).begin(); it != (c).end(); ++it) #define RITR(it, c) for(auto it = (c).rbegin(); it != (c).rend(); ++it) #define EXIST(c,x) ((c).find(x) != (c).end()) #define fst first #define snd second #define popcount __builtin_popcount #define UNIQ(v) (v).erase(unique(ALL(v)), (v).end()) #define bit(i) (1LL<<(i)) #ifdef DEBUG #include <misc/C++/Debug.cpp> #else #define dump(...) ((void)0) #endif #define gcd __gcd using namespace std; template <class T> constexpr T lcm(T m, T n){return m/gcd(m,n)*n;} template <typename I> void join(ostream &ost, I s, I t, string d=" "){for(auto i=s; i!=t; ++i){if(i!=s)ost<<d; ost<<*i;}ost<<endl;} template <typename T> istream& operator>>(istream &is, vector<T> &v){for(auto &a : v) is >> a; return is;} template <typename T, typename U> bool chmin(T &a, const U &b){return (a>b ? a=b, true : false);} template <typename T, typename U> bool chmax(T &a, const U &b){return (a<b ? a=b, true : false);} template <typename T, size_t N, typename U> void fill_array(T (&a)[N], const U &v){fill((U*)a, (U*)(a+N), v);} template <typename T> auto make_vector(int n, int m, const T &value){return vector<vector<T>>(n, vector<T>(m, value));} struct Init{ Init(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(12); cerr << fixed << setprecision(12); } }init; template <typename Cost = int> class Edge{ public: int from,to; Cost cost; Edge() {} Edge(int to, Cost cost): to(to), cost(cost){} Edge(int from, int to, Cost cost): from(from), to(to), cost(cost){} Edge rev() const {return Edge(to,from,cost);} friend std::ostream& operator<<(std::ostream &os, const Edge &e){ os << "(FROM: " << e.from << "," << "TO: " << e.to << "," << "COST: " << e.cost << ")"; return os; } }; template <typename T> using Graph = std::vector<std::vector<Edge<T>>>; template <typename T> using Tree = std::vector<std::vector<Edge<T>>>; template <typename C, typename T> void add_edge(C &g, int from, int to, T w){ g[from].push_back(Edge<T>(from, to, w)); } template <typename C, typename T> void add_undirected(C &g, int a, int b, T w){ g[a].push_back(Edge<T>(a, b, w)); g[b].push_back(Edge<T>(b, a, w)); } template <typename T> class Dijkstra{ public: std::vector<std::optional<T>> dist; private: void run(const Graph<T> &graph, std::vector<int> src){ const int n = graph.size(); dist.assign(n, std::nullopt); std::vector<bool> check(n, false); std::priority_queue<std::pair<T,int>, std::vector<std::pair<T,int>>, std::greater<std::pair<T,int>>> pq; for(auto s : src){ dist[s] = 0; pq.emplace(0, s); } while(not pq.empty()){ const auto [d,i] = pq.top(); pq.pop(); if(check[i]) continue; check[i] = true; for(auto &e : graph[i]){ if(not dist[e.to]){ dist[e.to] = d + e.cost; pq.emplace(*dist[e.to], e.to); }else{ if(*dist[e.to] > d + e.cost){ dist[e.to] = d + e.cost; if(not check[e.to]) pq.emplace(*dist[e.to], e.to); } } } } } public: Dijkstra(const Graph<T> &graph, int src){ run(graph, {src}); } Dijkstra(const Graph<T> &graph, const vector<int> &src){ run(graph, src); } }; int main(){ int n,m; while(cin >> n >> m){ Graph<LLI> graph(n); REP(i,m){ LLI a,b,c; cin >> a >> b >> c; --a, --b; add_undirected(graph, a, b, c); } auto dist = Dijkstra(graph, 0).dist; dump(dist); Graph<LLI> graph2(2*n); REP(i,n){ for(auto &e : graph[i]){ graph2[i].push_back(e); add_edge(graph2, i, e.to+n, 0LL); add_edge(graph2, i+n, e.to+n, e.cost); } } auto dist2 = Dijkstra(graph2, 0).dist; dump(dist2); REP(i,n){ LLI ans; if(i == 0) ans = 0; else ans = *dist[i] + *dist2[i+n]; cout << ans << endl; } } return 0; }