結果
| 問題 |
No.807 umg tours
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-01-22 23:23:14 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 428 ms / 4,000 ms |
| コード長 | 4,324 bytes |
| コンパイル時間 | 2,323 ms |
| コンパイル使用メモリ | 214,172 KB |
| 最終ジャッジ日時 | 2025-01-08 20:29:41 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 26 |
ソースコード
#include <bits/stdc++.h>
#define LLI long long int
#define FOR(v, a, b) for(LLI v = (a); v < (b); ++v)
#define FORE(v, a, b) for(LLI v = (a); v <= (b); ++v)
#define REP(v, n) FOR(v, 0, n)
#define REPE(v, n) FORE(v, 0, n)
#define REV(v, a, b) for(LLI v = (a); v >= (b); --v)
#define ALL(x) (x).begin(), (x).end()
#define RALL(x) (x).rbegin(), (x).rend()
#define ITR(it, c) for(auto it = (c).begin(); it != (c).end(); ++it)
#define RITR(it, c) for(auto it = (c).rbegin(); it != (c).rend(); ++it)
#define EXIST(c,x) ((c).find(x) != (c).end())
#define fst first
#define snd second
#define popcount __builtin_popcount
#define UNIQ(v) (v).erase(unique(ALL(v)), (v).end())
#define bit(i) (1LL<<(i))
#ifdef DEBUG
#include <misc/C++/Debug.cpp>
#else
#define dump(...) ((void)0)
#endif
#define gcd __gcd
using namespace std;
template <class T> constexpr T lcm(T m, T n){return m/gcd(m,n)*n;}
template <typename I> void join(ostream &ost, I s, I t, string d=" "){for(auto i=s; i!=t; ++i){if(i!=s)ost<<d; ost<<*i;}ost<<endl;}
template <typename T> istream& operator>>(istream &is, vector<T> &v){for(auto &a : v) is >> a; return is;}
template <typename T, typename U> bool chmin(T &a, const U &b){return (a>b ? a=b, true : false);}
template <typename T, typename U> bool chmax(T &a, const U &b){return (a<b ? a=b, true : false);}
template <typename T, size_t N, typename U> void fill_array(T (&a)[N], const U &v){fill((U*)a, (U*)(a+N), v);}
template <typename T> auto make_vector(int n, int m, const T &value){return vector<vector<T>>(n, vector<T>(m, value));}
struct Init{
Init(){
cin.tie(0);
ios::sync_with_stdio(false);
cout << fixed << setprecision(12);
cerr << fixed << setprecision(12);
}
}init;
template <typename Cost = int> class Edge{
public:
int from,to;
Cost cost;
Edge() {}
Edge(int to, Cost cost): to(to), cost(cost){}
Edge(int from, int to, Cost cost): from(from), to(to), cost(cost){}
Edge rev() const {return Edge(to,from,cost);}
friend std::ostream& operator<<(std::ostream &os, const Edge &e){
os << "(FROM: " << e.from << "," << "TO: " << e.to << "," << "COST: " << e.cost << ")";
return os;
}
};
template <typename T> using Graph = std::vector<std::vector<Edge<T>>>;
template <typename T> using Tree = std::vector<std::vector<Edge<T>>>;
template <typename C, typename T> void add_edge(C &g, int from, int to, T w){
g[from].push_back(Edge<T>(from, to, w));
}
template <typename C, typename T> void add_undirected(C &g, int a, int b, T w){
g[a].push_back(Edge<T>(a, b, w));
g[b].push_back(Edge<T>(b, a, w));
}
template <typename T>
class Dijkstra{
public:
std::vector<std::optional<T>> dist;
private:
void run(const Graph<T> &graph, std::vector<int> src){
const int n = graph.size();
dist.assign(n, std::nullopt);
std::vector<bool> check(n, false);
std::priority_queue<std::pair<T,int>, std::vector<std::pair<T,int>>, std::greater<std::pair<T,int>>> pq;
for(auto s : src){
dist[s] = 0;
pq.emplace(0, s);
}
while(not pq.empty()){
const auto [d,i] = pq.top(); pq.pop();
if(check[i]) continue;
check[i] = true;
for(auto &e : graph[i]){
if(not dist[e.to]){
dist[e.to] = d + e.cost;
pq.emplace(*dist[e.to], e.to);
}else{
if(*dist[e.to] > d + e.cost){
dist[e.to] = d + e.cost;
if(not check[e.to]) pq.emplace(*dist[e.to], e.to);
}
}
}
}
}
public:
Dijkstra(const Graph<T> &graph, int src){
run(graph, {src});
}
Dijkstra(const Graph<T> &graph, const vector<int> &src){
run(graph, src);
}
};
int main(){
int n,m;
while(cin >> n >> m){
Graph<LLI> graph(n);
REP(i,m){
LLI a,b,c; cin >> a >> b >> c; --a, --b;
add_undirected(graph, a, b, c);
}
auto dist = Dijkstra(graph, 0).dist;
dump(dist);
Graph<LLI> graph2(2*n);
REP(i,n){
for(auto &e : graph[i]){
graph2[i].push_back(e);
add_edge(graph2, i, e.to+n, 0LL);
add_edge(graph2, i+n, e.to+n, e.cost);
}
}
auto dist2 = Dijkstra(graph2, 0).dist;
dump(dist2);
REP(i,n){
LLI ans;
if(i == 0) ans = 0;
else ans = *dist[i] + *dist2[i+n];
cout << ans << endl;
}
}
return 0;
}