結果

問題 No.807 umg tours
ユーザー HaarHaar
提出日時 2020-01-22 23:23:14
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 468 ms / 4,000 ms
コード長 4,324 bytes
コンパイル時間 2,386 ms
コンパイル使用メモリ 220,264 KB
実行使用メモリ 56,572 KB
最終ジャッジ日時 2024-11-23 19:48:14
合計ジャッジ時間 8,948 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 3 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 3 ms
5,248 KB
testcase_03 AC 3 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 3 ms
5,248 KB
testcase_06 AC 2 ms
5,248 KB
testcase_07 AC 2 ms
5,248 KB
testcase_08 AC 2 ms
5,248 KB
testcase_09 AC 2 ms
5,248 KB
testcase_10 AC 3 ms
5,248 KB
testcase_11 AC 215 ms
40,748 KB
testcase_12 AC 262 ms
33,856 KB
testcase_13 AC 342 ms
44,504 KB
testcase_14 AC 150 ms
21,560 KB
testcase_15 AC 118 ms
17,988 KB
testcase_16 AC 365 ms
46,988 KB
testcase_17 AC 459 ms
56,272 KB
testcase_18 AC 462 ms
56,572 KB
testcase_19 AC 468 ms
54,168 KB
testcase_20 AC 281 ms
32,540 KB
testcase_21 AC 298 ms
33,648 KB
testcase_22 AC 112 ms
16,384 KB
testcase_23 AC 92 ms
13,696 KB
testcase_24 AC 258 ms
45,224 KB
testcase_25 AC 462 ms
56,512 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
#define LLI long long int
#define FOR(v, a, b) for(LLI v = (a); v < (b); ++v)
#define FORE(v, a, b) for(LLI v = (a); v <= (b); ++v)
#define REP(v, n) FOR(v, 0, n)
#define REPE(v, n) FORE(v, 0, n)
#define REV(v, a, b) for(LLI v = (a); v >= (b); --v)
#define ALL(x) (x).begin(), (x).end()
#define RALL(x) (x).rbegin(), (x).rend()
#define ITR(it, c) for(auto it = (c).begin(); it != (c).end(); ++it)
#define RITR(it, c) for(auto it = (c).rbegin(); it != (c).rend(); ++it)
#define EXIST(c,x) ((c).find(x) != (c).end())
#define fst first
#define snd second
#define popcount __builtin_popcount
#define UNIQ(v) (v).erase(unique(ALL(v)), (v).end())
#define bit(i) (1LL<<(i))

#ifdef DEBUG
#include <misc/C++/Debug.cpp>
#else
#define dump(...) ((void)0)
#endif

#define gcd __gcd

using namespace std;
template <class T> constexpr T lcm(T m, T n){return m/gcd(m,n)*n;}

template <typename I> void join(ostream &ost, I s, I t, string d=" "){for(auto i=s; i!=t; ++i){if(i!=s)ost<<d; ost<<*i;}ost<<endl;}
template <typename T> istream& operator>>(istream &is, vector<T> &v){for(auto &a : v) is >> a; return is;}
template <typename T, typename U> bool chmin(T &a, const U &b){return (a>b ? a=b, true : false);}
template <typename T, typename U> bool chmax(T &a, const U &b){return (a<b ? a=b, true : false);}
template <typename T, size_t N, typename U> void fill_array(T (&a)[N], const U &v){fill((U*)a, (U*)(a+N), v);}
template <typename T> auto make_vector(int n, int m, const T &value){return vector<vector<T>>(n, vector<T>(m, value));}


struct Init{
  Init(){
    cin.tie(0);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(12);
    cerr << fixed << setprecision(12);
  }
}init;



template <typename Cost = int> class Edge{
public:
  int from,to;
  Cost cost;
  Edge() {}
  Edge(int to, Cost cost): to(to), cost(cost){}
  Edge(int from, int to, Cost cost): from(from), to(to), cost(cost){}

  Edge rev() const {return Edge(to,from,cost);}
  
  friend std::ostream& operator<<(std::ostream &os, const Edge &e){
    os << "(FROM: " << e.from << "," << "TO: " << e.to << "," << "COST: " << e.cost << ")";
    return os;
  }
};

template <typename T> using Graph = std::vector<std::vector<Edge<T>>>;
template <typename T> using Tree = std::vector<std::vector<Edge<T>>>;

template <typename C, typename T> void add_edge(C &g, int from, int to, T w){
  g[from].push_back(Edge<T>(from, to, w));  
}

template <typename C, typename T> void add_undirected(C &g, int a, int b, T w){
  g[a].push_back(Edge<T>(a, b, w));
  g[b].push_back(Edge<T>(b, a, w));
}


template <typename T>
class Dijkstra{
public:
  std::vector<std::optional<T>> dist;

private:
  void run(const Graph<T> &graph, std::vector<int> src){
    const int n = graph.size();
    dist.assign(n, std::nullopt);
    
    std::vector<bool> check(n, false);
    std::priority_queue<std::pair<T,int>, std::vector<std::pair<T,int>>, std::greater<std::pair<T,int>>> pq;

    for(auto s : src){
      dist[s] = 0;
      pq.emplace(0, s);
    }

    while(not pq.empty()){
      const auto [d,i] = pq.top(); pq.pop();

      if(check[i]) continue;
      check[i] = true;

      for(auto &e : graph[i]){
        if(not dist[e.to]){
          dist[e.to] = d + e.cost;
          pq.emplace(*dist[e.to], e.to);
        }else{
          if(*dist[e.to] > d + e.cost){
            dist[e.to] = d + e.cost;
            if(not check[e.to]) pq.emplace(*dist[e.to], e.to);
          }
        }
      }
    }
  }

public:
  Dijkstra(const Graph<T> &graph, int src){
    run(graph, {src});
  }

  Dijkstra(const Graph<T> &graph, const vector<int> &src){
    run(graph, src);
  }
};


int main(){
  int n,m;
  while(cin >> n >> m){
    Graph<LLI> graph(n);
    REP(i,m){
      LLI a,b,c; cin >> a >> b >> c; --a, --b;
      add_undirected(graph, a, b, c);
    }
    
    auto dist = Dijkstra(graph, 0).dist;
    dump(dist);
    
    Graph<LLI> graph2(2*n);
    REP(i,n){
      for(auto &e : graph[i]){
        graph2[i].push_back(e);
        add_edge(graph2, i, e.to+n, 0LL);
        add_edge(graph2, i+n, e.to+n, e.cost);
      }
    }

    auto dist2 = Dijkstra(graph2, 0).dist;
    dump(dist2);
    
    REP(i,n){
      LLI ans;
      if(i == 0) ans = 0;
      else ans = *dist[i] + *dist2[i+n];
      cout << ans << endl;
    }
  }
  
  return 0;
}
0