結果
問題 | No.980 Fibonacci Convolution Hard |
ユーザー | risujiroh |
提出日時 | 2020-01-31 21:52:55 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
MLE
|
実行時間 | - |
コード長 | 5,282 bytes |
コンパイル時間 | 1,994 ms |
コンパイル使用メモリ | 183,808 KB |
実行使用メモリ | 519,312 KB |
最終ジャッジ日時 | 2024-09-17 07:59:41 |
合計ジャッジ時間 | 21,680 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | MLE | - |
testcase_01 | MLE | - |
testcase_02 | MLE | - |
testcase_03 | MLE | - |
testcase_04 | MLE | - |
testcase_05 | MLE | - |
testcase_06 | MLE | - |
testcase_07 | MLE | - |
testcase_08 | MLE | - |
testcase_09 | MLE | - |
testcase_10 | MLE | - |
testcase_11 | MLE | - |
testcase_12 | MLE | - |
testcase_13 | MLE | - |
testcase_14 | MLE | - |
testcase_15 | MLE | - |
testcase_16 | MLE | - |
ソースコード
#include <bits/stdc++.h> using namespace std; namespace fft { struct C { double x, y; C(double _x = 0, double _y = 0) : x(_x), y(_y) {} }; C operator+(C l, C r) { return {l.x + r.x, l.y + r.y}; } C operator-(C l, C r) { return {l.x - r.x, l.y - r.y}; } C operator*(C l, C r) { return {l.x * r.x - l.y * r.y, l.x * r.y + l.y * r.x}; } C operator~(C a) { return {a.x, -a.y}; } vector<C> w{1}; void ensure(int n) { for (int m = w.size(); m < n; m *= 2) { C dw{cos(acos(0) / m), sin(acos(0) / m)}; w.resize(2 * m); for (int i = 0; i < m; ++i) w[m + i] = w[i] * dw; } } void fft(vector<C>& a, int n, bool inverse) { assert((n & (n - 1)) == 0); ensure(n); if (not inverse) { for (int m = n; m >>= 1; ) { for (int s = 0, k = 0; s < n; s += 2 * m, ++k) { for (int i = s, j = s + m; i < s + m; ++i, ++j) { C x = a[i], y = a[j] * w[k]; a[i] = x + y, a[j] = x - y; } } } } else { for (int m = 1; m < n; m *= 2) { for (int s = 0, k = 0; s < n; s += 2 * m, ++k) { for (int i = s, j = s + m; i < s + m; ++i, ++j) { C x = a[i], y = a[j]; a[i] = x + y, a[j] = (x - y) * ~w[k]; } } } double inv = 1.0 / n; for (auto&& e : a) e.x *= inv, e.y *= inv; } } void real_fft(vector<C>& a) { if (a.size() < 2) return; assert(a.size() % 2 == 0); int n = a.size() / 2; for (int i = 0; i < n; ++i) a[i] = {a[2 * i].x, a[2 * i + 1].x}; fft(a, n, false); for (int s = n; s >>= 1; ) for (int i = s, j = 2 * s; j-- > s; ++i) { C wa((1 + w[i].y) / 2, -w[i].x / 2), wb((1 - w[i].y) / 2, w[i].x / 2); a[2 * i] = a[i] * wa + ~a[j] * wb, a[2 * j + 1] = ~a[2 * i]; } a[1] = a[0].x - a[0].y, a[0] = a[0].x + a[0].y; } void real_ifft(vector<C>& a) { if (a.size() < 2) return; assert(a.size() % 2 == 0); int n = a.size() / 2; for (int i = 0; i < n; ++i) { C wa((1 + w[i].y) / 2, w[i].x / 2), wb((1 - w[i].y) / 2, -w[i].x / 2); a[i] = a[2 * i] * wa + a[2 * i + 1] * wb; } fft(a, n, true); for (int i = n; i--; ) a[2 * i].x = a[i].x, a[2 * i + 1].x = a[i].y; } } // namespace fft template <class T, class F = multiplies<T>> T power(T a, long long n, F op = multiplies<T>(), T e = {1}) { assert(n >= 0); T res = e; while (n) { if (n & 1) res = op(res, a); if (n >>= 1) a = op(a, a); } return res; } template <unsigned Mod> struct Modular { using M = Modular; unsigned v; Modular(long long a = 0) : v((a %= Mod) < 0 ? a + Mod : a) {} M operator-() const { return M() -= *this; } M& operator+=(M r) { if ((v += r.v) >= Mod) v -= Mod; return *this; } M& operator-=(M r) { if ((v += Mod - r.v) >= Mod) v -= Mod; return *this; } M& operator*=(M r) { v = (uint64_t)v * r.v % Mod; return *this; } M& operator/=(M r) { return *this *= power(r, Mod - 2); } friend M operator+(M l, M r) { return l += r; } friend M operator-(M l, M r) { return l -= r; } friend M operator*(M l, M r) { return l *= r; } friend M operator/(M l, M r) { return l /= r; } friend bool operator==(M l, M r) { return l.v == r.v; } }; template <unsigned Mod, size_t K = 2, int B = __lg(Mod) / K + 1> array<vector<fft::C>, K> mint_fft(const vector<Modular<Mod>>& a, int sz) { array<vector<fft::C>, K> res; for (size_t p = 0; p < K; ++p) { res[p].resize(sz); for (int i = 0; i < (int)a.size(); ++i) res[p][i] = (a[i].v >> (p * B)) & ((1 << B) - 1); fft::real_fft(res[p]); } return res; } template <unsigned Mod, size_t N, int B = __lg(Mod) / ((N + 1) / 2) + 1> vector<Modular<Mod>> mint_ifft(array<vector<fft::C>, N> a) { int n = a[0].size(); vector<Modular<Mod>> res(n); for (size_t p = 0; p < N; ++p) { fft::real_ifft(a[p]); auto base = power(Modular<Mod>(2), p * B); for (int i = 0; i < n; ++i) res[i] += round(a[p][i].x) * base; } return res; } template <class T, size_t K> array<vector<T>, 2 * K - 1> operator*( const array<vector<T>, K>& l, const array<vector<T>, K>& r) { int n = l[0].size(); array<vector<T>, 2 * K - 1> res; for (size_t p = 0; p < K; ++p) for (size_t q = 0; q < K; ++q) { res[p + q].resize(n); for (int i = 0; i < n; ++i) res[p + q][i] = res[p + q][i] + l[p][i] * r[q][i]; } return res; } template <unsigned Mod> vector<Modular<Mod>> operator*( const vector<Modular<Mod>>& l, const vector<Modular<Mod>>& r) { if (l.empty() or r.empty()) return {}; int n = l.size(), m = r.size(), sz = 1 << __lg(2 * (n + m - 1) - 1); if (min(n, m) < 30) { vector<long long> res(n + m - 1); for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) res[i + j] += (l[i] * r[j]).v; return {begin(res), end(res)}; } bool eq = l == r; auto a = mint_fft(l, sz), b = eq ? a : mint_fft(r, sz); auto res = mint_ifft<Mod>(a * b); return {begin(res), begin(res) + (n + m - 1)}; } constexpr long long mod = 1e9 + 7; using Mint = Modular<mod>; int main() { cin.tie(nullptr); ios::sync_with_stdio(false); int p; cin >> p; int n = 2e6; vector<Mint> a(n); for (int i = 0; i < n; ++i) { if (i < 2) { a[i] = i; } else { a[i] = p * a[i - 1] + a[i - 2]; } } a = a * a; int q; cin >> q; while (q--) { int i; cin >> i; i -= 2; cout << a[i].v << '\n'; } }