結果

問題 No.978 Fibonacci Convolution Easy
ユーザー guriceringuricerin
提出日時 2020-02-01 12:19:32
言語 F#
(F# 4.0)
結果
AC  
実行時間 1,006 ms / 2,000 ms
コード長 4,679 bytes
コンパイル時間 10,370 ms
コンパイル使用メモリ 213,824 KB
実行使用メモリ 199,424 KB
最終ジャッジ日時 2024-09-18 21:06:47
合計ジャッジ時間 19,040 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 59 ms
33,536 KB
testcase_01 AC 428 ms
105,648 KB
testcase_02 AC 237 ms
80,292 KB
testcase_03 AC 976 ms
191,484 KB
testcase_04 AC 231 ms
81,024 KB
testcase_05 AC 75 ms
44,288 KB
testcase_06 AC 354 ms
103,808 KB
testcase_07 AC 612 ms
159,744 KB
testcase_08 AC 451 ms
127,488 KB
testcase_09 AC 724 ms
154,436 KB
testcase_10 AC 1,000 ms
199,196 KB
testcase_11 AC 257 ms
96,692 KB
testcase_12 AC 73 ms
42,496 KB
testcase_13 AC 350 ms
103,604 KB
testcase_14 AC 94 ms
55,040 KB
testcase_15 AC 387 ms
105,144 KB
testcase_16 AC 1,004 ms
199,424 KB
testcase_17 AC 1,006 ms
199,312 KB
testcase_18 AC 54 ms
29,696 KB
testcase_19 AC 53 ms
29,440 KB
testcase_20 AC 52 ms
29,696 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
  復元対象のプロジェクトを決定しています...
  /home/judge/data/code/main.fsproj を復元しました (227 ms)。
MSBuild のバージョン 17.9.6+a4ecab324 (.NET)
/home/judge/data/code/Main.fs(133,9): warning FS0025: この式のパターン マッチが不完全です たとえば、値 '[|_; _; _|]' はパターンに含まれないケースを示す可能性があります。 [/home/judge/data/code/main.fsproj]
  main -> /home/judge/data/code/bin/Release/net8.0/main.dll
  main -> /home/judge/data/code/bin/Release/net8.0/publish/

ソースコード

diff #

open System
open System.Collections.Generic

[<AutoOpen>]
module Cin =
    let read f = stdin.ReadLine() |> f
    let reada f = stdin.ReadLine().Split() |> Array.map f
    let readChars() = read string |> Seq.toArray
    let readInts() = readChars() |> Array.map (fun x -> Convert.ToInt32(x.ToString()))

[<AutoOpen>]
module Cout =
    let writer = new IO.StreamWriter(new IO.BufferedStream(Console.OpenStandardOutput()))
    let print (s: string) = writer.Write s
    let println (s: string) = writer.WriteLine s
    let inline puts (s: ^a) = string s |> println

type ModInt = MVal of int64

[<RequireQualifiedAccess>]
[<CompilationRepresentation(CompilationRepresentationFlags.ModuleSuffix)>] // 型名とモジュール名の重複を許す
module ModInt =
    let modulo = (int64 1e9) + 7L

    let inline init (x: ^a): ModInt =
        let x = (int64 x) % modulo
        match x with
        | _ when x < 0L -> MVal(x + modulo)
        | _ when x >= modulo -> MVal(x - modulo)
        | _ -> MVal x

    let zero = init 0
    let one = init 1

    let value (MVal x) = x

    let value2 (x: ModInt) (y: ModInt) = (value x, value y)

    let toString (MVal v): string = sprintf "%d" v

    /// 拡張ユークリッドの互除法
    /// a (mod m) における逆元 a^-1
    let inline inverse (MVal a): ModInt =
        let mutable (a, b, u, v) = (a, modulo, 1L, 0L)
        while b > 0L do
            let t = a / b
            a <- a - (t * b)
            let tmp = a
            a <- b
            b <- tmp
            u <- u - (t * v)
            let tmp = u
            u <- v
            v <- tmp
        init u

type ModInt with

    static member inline (+) (lhs: ModInt, rhs: ModInt): ModInt =
        let l, r = ModInt.value2 lhs rhs
        let x = l + r
        ModInt.init x

    static member inline (-) (lhs: ModInt, rhs: ModInt): ModInt =
        let l, r = ModInt.value2 lhs rhs
        let x = l - r
        ModInt.init x

    static member inline (*) (lhs: ModInt, rhs: ModInt): ModInt =
        let l, r = ModInt.value2 lhs rhs
        let x = l * r
        ModInt.init x

    /// a / b = a * b^-1 (mod m)
    static member inline (/) (lhs: ModInt, rhs: ModInt): ModInt =
        let r = ModInt.inverse rhs
        lhs * r

    /// a^n (mod m) 繰り返しニ乗法
    /// O(log n)
    static member inline Pow(a: ModInt, e: int64): ModInt =
        let mutable (res, a, e) = (ModInt.one, a, e)
        while e > 0L do
            if (e &&& 1L) <> 0L then res <- res * a
            a <- a * a
            e <- e >>> 1
        res

    /// 符号反転
    static member inline (~-) (x: ModInt): ModInt =
        let v = ModInt.value x
        ModInt.init (-v)

type BiCoef =
    { modulo: int64
      fact: ModInt array
      inv: ModInt array
      finv: ModInt array }

[<RequireQualifiedAccess>]
[<CompilationRepresentation(CompilationRepresentationFlags.ModuleSuffix)>]
module BiCoef =

    let inline init (n: ^a) (modulo: ^b): BiCoef =
        let n = int n
        let one = ModInt.one
        let fact = Array.init n (fun _ -> one)
        let inv = Array.init n (fun _ -> one)
        let finv = Array.init n (fun _ -> one)
        let m = modulo |> int
        for i in 2 .. n - 1 do
            fact.[i] <- fact.[i - 1] * (ModInt.init i)
            inv.[i] <- -inv.[m % i] * (ModInt.init (m / i))
            finv.[i] <- finv.[i - 1] * inv.[i]

        { BiCoef.modulo = modulo |> int64
          fact = fact
          inv = inv
          finv = finv }

    let inline com (n: ^a) (k: ^b) (bicoef: BiCoef) =
        let n, k = int n, int k
        let zero = ModInt.zero
        match n, k with
        | _ when n < k -> zero
        | _ when n < 0 -> zero
        | _ when k < 0 -> zero
        | _ ->
            let res = bicoef.fact.[n] * bicoef.finv.[k] * bicoef.finv.[n - k]
            res

let main() =
    let [| n; p |] = reada int
    let mp = ModInt.init p
    let fib = Array.init (n + 10) (fun _ -> ModInt.zero)
    fib.[1] <- ModInt.one
    for i in 2 .. n do
        let a = fib.[i - 1] * mp + fib.[i - 2]
        fib.[i] <- a

    // 二重のシグマを分解
    // 二重ループを累積和を使って一重ループに圧縮
    // https://mathtrain.jp/sigma の「二重和の計算」を参照
    // Σ(0 <= i <= n-1) Σ(0 <= j <= i) { a_i * a_j }
    // -> Σ(0 <= i <= n-1) { a_i } * Σ(0 <= j <= i) { a_j }
    // -> a_i * <a_iまでの累積和>
    let acc = fib |> Array.scan (+) ModInt.zero
    let mutable ans = ModInt.zero
    for i in 0 .. n - 1 do
        let a = fib.[i]
        let b = acc.[i + 1]
        ans <- ans + a * b

    ans
    |> ModInt.value
    |> puts
    ()

main()
writer.Close()
0