結果
問題 | No.981 一般冪乗根 |
ユーザー | 37zigen |
提出日時 | 2020-02-11 10:20:53 |
言語 | Java21 (openjdk 21) |
結果 |
AC
|
実行時間 | 404 ms / 6,000 ms |
コード長 | 3,221 bytes |
コンパイル時間 | 2,617 ms |
コンパイル使用メモリ | 83,008 KB |
実行使用メモリ | 135,096 KB |
最終ジャッジ日時 | 2024-10-09 23:39:21 |
合計ジャッジ時間 | 96,719 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 349 ms
89,000 KB |
testcase_01 | AC | 326 ms
52,208 KB |
testcase_02 | AC | 341 ms
135,096 KB |
testcase_03 | AC | 341 ms
89,072 KB |
testcase_04 | AC | 338 ms
64,680 KB |
testcase_05 | AC | 329 ms
52,236 KB |
testcase_06 | AC | 336 ms
47,088 KB |
testcase_07 | AC | 321 ms
46,732 KB |
testcase_08 | AC | 332 ms
46,460 KB |
testcase_09 | AC | 334 ms
47,120 KB |
testcase_10 | AC | 318 ms
46,588 KB |
testcase_11 | AC | 322 ms
46,564 KB |
testcase_12 | AC | 325 ms
47,360 KB |
testcase_13 | AC | 332 ms
46,776 KB |
testcase_14 | AC | 320 ms
46,404 KB |
testcase_15 | AC | 327 ms
47,012 KB |
testcase_16 | AC | 319 ms
47,008 KB |
testcase_17 | AC | 331 ms
46,600 KB |
testcase_18 | AC | 321 ms
46,648 KB |
testcase_19 | AC | 325 ms
46,752 KB |
testcase_20 | AC | 328 ms
46,836 KB |
testcase_21 | AC | 323 ms
46,352 KB |
testcase_22 | AC | 332 ms
47,200 KB |
testcase_23 | AC | 326 ms
46,960 KB |
testcase_24 | AC | 321 ms
46,844 KB |
testcase_25 | AC | 356 ms
46,968 KB |
testcase_26 | AC | 328 ms
46,872 KB |
testcase_27 | AC | 307 ms
47,688 KB |
testcase_28 | AC | 404 ms
46,848 KB |
evil_60bit1.txt | AC | 500 ms
49,804 KB |
evil_60bit2.txt | AC | 495 ms
49,480 KB |
evil_60bit3.txt | AC | 529 ms
49,464 KB |
evil_hack | AC | 141 ms
41,536 KB |
evil_hard_random | AC | 493 ms
49,504 KB |
evil_hard_safeprime.txt | AC | 595 ms
49,656 KB |
evil_hard_tonelli0 | TLE | - |
evil_hard_tonelli1 | TLE | - |
evil_hard_tonelli2 | AC | 1,519 ms
73,740 KB |
evil_hard_tonelli3 | TLE | - |
evil_sefeprime1.txt | AC | 604 ms
49,460 KB |
evil_sefeprime2.txt | AC | 599 ms
49,812 KB |
evil_sefeprime3.txt | AC | 613 ms
50,060 KB |
evil_tonelli1.txt | TLE | - |
evil_tonelli2.txt | TLE | - |
ソースコード
import java.io.PrintWriter; import java.math.BigInteger; import java.util.Arrays; import java.util.HashMap; import java.util.Scanner; class Main { public static void main(String[] args) throws Exception { long curtime=System.currentTimeMillis(); new Main().run(); System.err.println(System.currentTimeMillis()-curtime); } void run() { Scanner sc = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); int T = sc.nextInt(); for (int i = 0; i < T; ++i) { long p = sc.nextLong(); long k = sc.nextLong(); long a = sc.nextLong(); long kthroot = kth_root(a, k, p); System.out.println(kthroot); // pw.println(kthroot); } pw.close(); } long kth_root(long a, long k, long p) { long g = gcd(k, p - 1); if (pow(a, (p - 1) / g, p) != 1) return -1; a = pow(a, inv(k / g, (p - 1) / g), p); for (long div = 2; div * div <= g; ++div) { int sz = 0; while (g % div == 0) { g /= div; ++sz; } if (sz > 0) { long b = peth_root(a, div, sz, p); a = b; } } if (g > 1) a = peth_root(a, g, 1, p); return a; } long peth_root(long a, long p, int e, long mod) { long q = mod - 1; int s = 0; while (q % p == 0) { q /= p; ++s; } long pe = pow(p, e, mod); long ans = pow(a, (mul((pe - 1) , inv(q, pe) , pe) * q + 1) / pe, mod); long c = 2; while (pow(c, (mod - 1) / p, mod) == 1) ++c; c = pow(c, q, mod); HashMap<Long, Integer> map = new HashMap<>(); long add = 1; int v = (int) Math.sqrt((double)(s-e)*p) + 1; long mul = pow(c, mul(v, pow(p, s - 1, mod - 1),mod-1), mod); for (int i = 0; i <= v; ++i) { map.put(add, i); add = mul(add , mul , mod); } mul = inv(pow(c, pow(p, s - 1, mod - 1), mod), mod); out: for (int i = e; i < s; ++i) { long err = mul(inv(pow(ans, pe, mod), mod) , a , mod); long target = pow(err, pow(p, s - 1 - i, mod - 1), mod); for (int j = 0; j <= v; ++j) { if (map.containsKey(target)) { int x = map.get(target); ans = mul(ans , pow(c, mul((j + v * x) , pow(p, i - e, mod - 1) , (mod - 1)), mod) , mod); continue out; } target = mul(target , mul , mod); } throw new AssertionError(); } return ans; } int cnt(long a, long base, long p) { int ret = 0; while (a != 1) { a = pow(a, base, p); ++ret; } return ret; } long inv(long a, long p) { a %= p; long u = 1, v = 0; long b = p; while (b > 0) { long q = a / b; a %= b; u -=mul(v , q , p); u = (u%p+p)%p; { u ^= v; v ^= u; u ^= v; a ^= b; b ^= a; a ^= b; } } return u < 0 ? u + p : u; } long pow(long a, long n, long p) { n %= p - 1; BigInteger r=BigInteger.ONE; BigInteger a_=BigInteger.valueOf(a); BigInteger p_=BigInteger.valueOf(p); for (; n > 0; n >>= 1, a_=a_.multiply(a_).remainder(p_)) if (n % 2 == 1) r = r.multiply(a_).remainder(p_); return r.longValue(); } long gcd(long a, long b) { return a == 0 ? b : gcd(b % a, a); } long mul(long a,long b,long p) { return BigInteger.valueOf(a).multiply(BigInteger.valueOf(b)).mod(BigInteger.valueOf(p)).longValue(); } static void tr(Object... objects) { System.out.println(Arrays.deepToString(objects)); } }