結果

問題 No.991 N×Mマス計算(構築)
ユーザー ミドリムシミドリムシ
提出日時 2020-02-14 22:13:47
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 4,103 bytes
コンパイル時間 1,528 ms
コンパイル使用メモリ 171,856 KB
実行使用メモリ 6,824 KB
最終ジャッジ日時 2024-10-06 12:25:07
合計ジャッジ時間 10,749 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 126 ms
6,816 KB
testcase_01 WA -
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using lint = long long;
const lint mod = 1e9 + 7;
#define all(x) (x).begin(), (x).end()
#define bitcount(n) __builtin_popcountll((lint)(n))
#define fcout cout << fixed << setprecision(15)
#define highest(x) (63 - __builtin_clzll(x))
#define rep(i, n) for(int i = 0; i < n; i++)
const int inf9 = 1e9; const lint inf18 = 1e18;
template<class T> inline void YES(T condition){ if(condition) cout << "YES" << endl; else cout << "NO" << endl; }
template<class T> inline void Yes(T condition){ if(condition) cout << "Yes" << endl; else cout << "No" << endl; }
template<class T = string, class U = char>int character_count(T text, U character){ int ans = 0; for(U i: text){ ans += (i == character); } return ans; }
lint power(lint base, lint exponent, lint module){ if(exponent % 2){ return power(base, exponent - 1, module) * base % module; }else if(exponent){ lint root_ans = power(base, exponent / 2, module); return root_ans * root_ans % module; }else{ return 1; }}
struct position{ double y, x; }; position mv[4] = {{0, -1}, {1, 0}, {0, 1}, {-1, 0}}; double euclidean(position first, position second){ return sqrt((second.x - first.x) * (second.x - first.x) + (second.y - first.y) * (second.y - first.y)); } double euclidean(double first, double second){ return sqrt(first * first + second * second); }
template<class T, class U> string to_string(pair<T, U> x){ return to_string(x.first) + "," + to_string(x.second); } string to_string(string x){ return x; }
template<class itr> void array_output(itr start, itr goal){ string ans; for(auto i = start; i != goal; i++) ans += to_string(*i) + " "; if(!ans.empty()) ans.pop_back(); cout << ans << endl; }
template<class itr> void cins(itr first, itr last){ for(auto i = first; i != last; i++){ cin >> (*i); } }
template<class T> T gcd(T a, T b){ if(a && b){ return gcd(min(a, b), max(a, b) % min(a, b)); }else{ return a; }} template<class T> T lcm(T a, T b){ return a / gcd(a, b) * b; }
struct combination{ vector<lint> fact, inv; combination(int sz) : fact(sz + 1), inv(sz + 1){ fact[0] = 1; for(int i = 1; i <= sz; i++){ fact[i] = fact[i - 1] * i % mod; } inv[sz] = power(fact[sz], mod - 2, mod); for(int i = sz - 1; i >= 0; i--){ inv[i] = inv[i + 1] * (i + 1) % mod; } } lint P(int n, int r){ if(r < 0 || n < r) return 0; return (fact[n] * inv[n - r] % mod); } lint C(int p, int q){ if(q < 0 || p < q) return 0; return (fact[p] * inv[q] % mod * inv[p - q] % mod); } };
template<class itr> bool next_sequence(itr first, itr last, int max_bound){ itr now = last; while(now != first){ now--; (*now)++; if((*now) == max_bound){ (*now) = 0; }else{ return true; } } return false; }
template<class itr, class itr2> bool next_sequence2(itr first, itr last, itr2 first2, itr2 last2){ itr now = last; itr2 now2 = last2; while(now != first){ now--, now2--; (*now)++; if((*now) == (*now2)){ (*now) = 0; }else{ return true; } } return false; }
inline int at(lint i, int j){ return (i >> j) & 1; }

int main(){
    lint X;
    cin >> X;
    int N = 99991, M = 99991;
    lint K = 1e9;
    cout << N << " " << M << " " << K << endl;
    cout << "* ";
    lint left = X / N, down = X % N;
    lint remaining = K - 1 - ((K / 2) * (N - down) % K + (M - left - 1) * (N + down) % K + X + K - 1) % K;
    lint coef = (N + down) % K;
    lint d = gcd(remaining, coef);
    //cout << "-> " << remaining << " " << coef << endl;
    remaining /= d, coef /= d;
    lint num = remaining * power(coef, 400000000 - 1, K) % K;
    //cout << "-> " << num << endl;
    lint A[N], B[M];
    for(int i = 0; i < left; i++){
        B[i] = K;
    }
    B[left] = K / 2;
    for(int i = int(left) + 1; i < M; i++){
        B[i] = 1;
    }
    for(int i = M - 100; i < M; i++){
        B[i] += num / 100;
    }
    B[M - 1] += num % 100;
    for(int i = 0; i < down; i++){
        A[i] = 2;
    }
    for(int i = int(down); i < N; i++){
        A[i] = 1;
    }
    //assert((accumulate(A, A + M, 0ll) % K) * (accumulate(B, B + M, 0ll) % K) % K == X);
    array_output(B, B + M);
    for(int i = 0; i < N; i++){
        cout << A[i] << endl;
    }
}
0