結果
| 問題 | No.171 スワップ文字列(Med) | 
| コンテスト | |
| ユーザー | 👑 | 
| 提出日時 | 2020-03-01 19:48:21 | 
| 言語 | Lua (LuaJit 2.1.1734355927) | 
| 結果 | 
                                WA
                                 
                             | 
| 実行時間 | - | 
| コード長 | 1,883 bytes | 
| コンパイル時間 | 48 ms | 
| コンパイル使用メモリ | 6,944 KB | 
| 実行使用メモリ | 6,820 KB | 
| 最終ジャッジ日時 | 2024-10-13 20:47:54 | 
| 合計ジャッジ時間 | 608 ms | 
| ジャッジサーバーID (参考情報) | judge5 / judge2 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 7 WA * 3 | 
ソースコード
local mce, mfl, msq, mmi, mma, mab = math.ceil, math.floor, math.sqrt, math.min, math.max, math.abs
local function getprimes(x)
  local primes = {}
  local allnums = {}
  for i = 1, x do allnums[i] = true end
  for i = 2, x do
    if allnums[i] then
      table.insert(primes, i)
      local lim = mfl(x / i)
      for j = 2, lim do
        allnums[j * i] = false
      end
    end
  end
  return primes
end
local function getdivisorparts(x, primes, tbl, mul)
  local prime_num = #primes
  local tmp = {}
  local lim = mce(msq(x))
  local primepos = 1
  local dv = primes[primepos]
  while primepos <= prime_num and dv <= lim do
    if x % dv == 0 then
      local cnt = 1
      x = x / dv
      while x % dv == 0 do
        x = x / dv
        cnt = cnt + 1
      end
      if tbl[dv] then
        tbl[dv] = tbl[dv] + cnt * mul
      else
        tbl[dv] = cnt * mul
      end
      lim = mce(msq(x))
    end
    if primepos == prime_num then break end
    primepos = primepos + 1
    dv = primes[primepos]
  end
  if x ~= 1 then
    if tbl[x] then
      tbl[x] = tbl[x] + mul
    else
      tbl[x] = mul
    end
  end
end
local s = io.read()
local n = #s
local tmap = {}
for i = 1, n do
  local ss = s:sub(i, i)
  if tmap[ss] then
    tmap[ss] = tmap[ss] + 1
  else
    tmap[ss] = 1
  end
end
local t = {}
for w, cnt in pairs(tmap) do
  table.insert(t, cnt)
end
local mulcnt = {}
for i = 1, n do
  mulcnt[i] = 0
end
do
  local rem = n
  for i = 1, #t do
    local c = t[i]
    for i = 1, c do
      mulcnt[i] = mulcnt[i] - 1
      mulcnt[rem + 1 - i] = mulcnt[rem + 1 - i] + 1
    end
    rem = rem - c
  end
end
local dvp = {}
local primes = getprimes(mce(msq(n)))
for i = 2, n do
  if 0 ~= mulcnt[i] then
    getdivisorparts(i, primes, dvp, mulcnt[i])
  end
end
local ret = 1
for src, pw in pairs(dvp) do
  for i = 1, pw do
    ret = (ret * src) % 573
  end
end
print(ret - 1)
            
            
            
        