結果
問題 | No.872 All Tree Path |
ユーザー | ningenMe |
提出日時 | 2020-04-30 04:10:17 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 286 ms / 3,000 ms |
コード長 | 11,984 bytes |
コンパイル時間 | 2,673 ms |
コンパイル使用メモリ | 220,180 KB |
実行使用メモリ | 45,844 KB |
最終ジャッジ日時 | 2024-05-08 02:32:08 |
合計ジャッジ時間 | 6,540 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 268 ms
35,780 KB |
testcase_01 | AC | 257 ms
35,860 KB |
testcase_02 | AC | 263 ms
35,856 KB |
testcase_03 | AC | 209 ms
45,844 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 278 ms
35,884 KB |
testcase_06 | AC | 274 ms
35,968 KB |
testcase_07 | AC | 286 ms
35,800 KB |
testcase_08 | AC | 23 ms
6,784 KB |
testcase_09 | AC | 22 ms
6,528 KB |
testcase_10 | AC | 22 ms
6,528 KB |
testcase_11 | AC | 21 ms
6,528 KB |
testcase_12 | AC | 22 ms
6,656 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 1 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 1 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using ll = long long; #define ALL(obj) (obj).begin(),(obj).end() #define SPEED cin.tie(0);ios::sync_with_stdio(false); template<class T> using PQ = priority_queue<T>; template<class T> using PQR = priority_queue<T,vector<T>,greater<T>>; constexpr long long MOD = (long long)1e9 + 7; constexpr long long MOD2 = 998244353; constexpr long long HIGHINF = (long long)1e18; constexpr long long LOWINF = (long long)1e15; constexpr long double PI = 3.1415926535897932384626433L; template <class T> vector<T> multivector(size_t N,T init){return vector<T>(N,init);} template <class... T> auto multivector(size_t N,T... t){return vector<decltype(multivector(t...))>(N,multivector(t...));} template <class T> void corner(bool flg, T hoge) {if (flg) {cout << hoge << endl; exit(0);}} template <class T, class U>ostream &operator<<(ostream &o, const map<T, U>&obj) {o << "{"; for (auto &x : obj) o << " {" << x.first << " : " << x.second << "}" << ","; o << " }"; return o;} template <class T>ostream &operator<<(ostream &o, const set<T>&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;} template <class T>ostream &operator<<(ostream &o, const multiset<T>&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;} template <class T>ostream &operator<<(ostream &o, const vector<T>&obj) {o << "{"; for (int i = 0; i < (int)obj.size(); ++i)o << (i > 0 ? ", " : "") << obj[i]; o << "}"; return o;} template <class T, class U>ostream &operator<<(ostream &o, const pair<T, U>&obj) {o << "{" << obj.first << ", " << obj.second << "}"; return o;} template <template <class tmp> class T, class U> ostream &operator<<(ostream &o, const T<U> &obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr)o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;} void print(void) {cout << endl;} template <class Head> void print(Head&& head) {cout << head;print();} template <class Head, class... Tail> void print(Head&& head, Tail&&... tail) {cout << head << " ";print(forward<Tail>(tail)...);} template <class T> void chmax(T& a, const T b){a=max(a,b);} template <class T> void chmin(T& a, const T b){a=min(a,b);} void YN(bool flg) {cout << (flg ? "YES" : "NO") << endl;} void Yn(bool flg) {cout << (flg ? "Yes" : "No") << endl;} void yn(bool flg) {cout << (flg ? "yes" : "no") << endl;} template<class Operator> class Tree { using TypeDist = typename Operator::TypeDist; size_t num; size_t ord; public: vector<vector<pair<size_t,TypeDist>>> edge; vector<size_t> depth; vector<size_t> order; vector<size_t> reorder; vector<TypeDist> dist; vector<pair<size_t,TypeDist>> parent; vector<vector<pair<size_t,TypeDist>>> child; vector<array<pair<size_t,TypeDist>,Operator::bit>> ancestor; vector<size_t> size; vector<vector<size_t>> descendant; vector<size_t> head; vector<size_t> hldorder; vector<size_t> eulertour; vector<pair<size_t,size_t>> eulertour_range; Tree(const int num):num(num),edge(num),depth(num,-1),order(num),dist(num){} //O(1) anytime void make_edge(const int& from, const int& to, const TypeDist w = 1) { edge[from].push_back({to,w}); } //O(N) anytime void make_depth(const int root) { depth[root] = 0; dist[root] = Operator::unit_dist; ord = 0; dfs1(root); order[ord++] = root; reverse_copy(order.begin(),order.end(),back_inserter(reorder)); } //O(N) anytime void make_depth(void) { ord = 0; for(size_t root = 0; root < num; ++root) { if(depth[root] != -1) continue; depth[root] = 0; dist[root] = Operator::unit_dist; dfs1(root); order[ord++] = root; } reverse_copy(order.begin(),order.end(),back_inserter(reorder)); } //for make_depth void dfs1(int curr, int prev = -1){ for(auto& e:edge[curr]){ int next = e.first; if(next==prev) continue; depth[next] = depth[curr] + 1; dist[next] = Operator::func_dist(dist[curr],e.second); dfs1(next,curr); order[ord++] = next; } } //O(N) after make_depth void make_parent(void) { parent.resize(num,make_pair(num,Operator::unit_dist)); for (size_t i = 0; i < num; ++i) for (auto& e : edge[i]) if (depth[i] > depth[e.first]) parent[i] = e; } //O(N) after make_depth void make_child(void) { child.resize(num); for (size_t i = 0; i < num; ++i) for (auto& e : edge[i]) if (depth[i] < depth[e.first]) child[i].push_back(e); } //O(NlogN) after make_depth and make_parent void make_ancestor(void) { ancestor.resize(num); for (size_t i = 0; i < num; ++i) ancestor[i][0] = (parent[i].first!=num?parent[i]:make_pair(i,Operator::unit_lca)); for (size_t j = 1; j < Operator::bit; ++j) { for (size_t i = 0; i < num; ++i) { size_t k = ancestor[i][j - 1].first; ancestor[i][j] = Operator::func_lca(ancestor[k][j - 1],ancestor[i][j - 1]); } } } //O(logN) after make_ancestor //return {lca,lca_dist} l and r must be connected pair<size_t,TypeDist> lca(size_t l, size_t r) { if (depth[l] < depth[r]) swap(l, r); int diff = depth[l] - depth[r]; auto ancl = make_pair(l,Operator::unit_lca); auto ancr = make_pair(r,Operator::unit_lca); for (int j = 0; j < Operator::bit; ++j) { if (diff & (1 << j)) { ancl = Operator::func_lca(ancestor[ancl.first][j],ancl); } } if(ancl.first==ancr.first) return ancl; for (int j = Operator::bit - 1; 0 <= j; --j) { if(ancestor[ancl.first][j].first!=ancestor[ancr.first][j].first) { ancl = Operator::func_lca(ancestor[ancl.first][j],ancl); ancr = Operator::func_lca(ancestor[ancr.first][j],ancr); } } ancl = Operator::func_lca(ancestor[ancl.first][0],ancl); ancr = Operator::func_lca(ancestor[ancr.first][0],ancr); return Operator::func_lca(ancl,ancr); } //O(N) anytime int diameter(void){ make_depth(0); int tmp = max_element(depth.begin(), depth.end()) - depth.begin(); make_depth(tmp); return *max_element(depth.begin(), depth.end()); } //O(N^2) after make_depth (include self) void make_descendant(void) { descendant.resize(num); for (size_t i = 0; i < num; ++i) descendant[i].push_back(i); for (size_t i = 0; i < num; ++i) for (auto& e : edge[order[i]]) if (depth[order[i]] < depth[e.first]) for(auto k: descendant[e.first]) descendant[order[i]].push_back(k); } //O(N) after make_child void make_size(void) { size.resize(num,1); for (size_t i:order) for (auto e : child[i]) size[i] += size[e.first]; } //(N) after make_depth and make_child template<class TypeReroot> vector<TypeReroot> rerooting(vector<TypeReroot> rerootdp,vector<TypeReroot> rerootparent) { for(size_t pa:order) for(auto& e:child[pa]) rerootdp[pa] = Operator::func_reroot(rerootdp[pa],rerootdp[e.first]); for(size_t pa:reorder) { if(depth[pa]) rerootdp[pa] = Operator::func_reroot(rerootdp[pa],rerootparent[pa]); size_t m = child[pa].size(); for(int j = 0; j < m && depth[pa]; ++j){ size_t ch = child[pa][j].first; rerootparent[ch] = Operator::func_reroot(rerootparent[ch],rerootparent[pa]); } if(m <= 1) continue; vector<TypeReroot> l(m),r(m); for(int j = 0; j < m; ++j) { size_t ch = child[pa][j].first; l[j] = rerootdp[ch]; r[j] = rerootdp[ch]; } for(int j = 1; j+1 < m; ++j) l[j] = Operator::func_reroot_merge(l[j],l[j-1]); for(int j = m-2; 0 <=j; --j) r[j] = Operator::func_reroot_merge(r[j],r[j+1]); size_t chl = child[pa].front().first; size_t chr = child[pa].back().first; rerootparent[chl] = Operator::func_reroot(rerootparent[chl],r[1]); rerootparent[chr] = Operator::func_reroot(rerootparent[chr],l[m-2]); for(int j = 1; j+1 < m; ++j) { size_t ch = child[pa][j].first; rerootparent[ch] = Operator::func_reroot(rerootparent[ch],l[j-1]); rerootparent[ch] = Operator::func_reroot(rerootparent[ch],r[j+1]); } } return rerootdp; } //O(N) after make_depth,make_parent,make_child void heavy_light_decomposition(){ head.resize(num); hldorder.resize(num); iota(head.begin(),head.end(),0); for(size_t& pa:reorder) { pair<size_t,size_t> maxi = {0,num}; for(auto& e:child[pa]) maxi = max(maxi,{size[e.first],e.first}); if(maxi.first) head[maxi.second] = head[pa]; } stack<size_t> st_head,st_sub; size_t cnt = 0; for(size_t& root:reorder){ if(depth[root]) continue; st_head.push(root); while(st_head.size()){ size_t h = st_head.top(); st_head.pop(); st_sub.push(h); while (st_sub.size()){ size_t pa = st_sub.top(); st_sub.pop(); hldorder[pa] = cnt++; for(auto& e:child[pa]) { if(head[e.first]==head[pa]) st_sub.push(e.first); else st_head.push(e.first); } } } } } //after hld type 0: vertex, 1: edge vector<pair<size_t,size_t>> path(size_t u,size_t v,int type = 0) { vector<pair<size_t,size_t>> path; while(1){ if(hldorder[u]>hldorder[v]) swap(u,v); if(head[u]!=head[v]) { path.push_back({hldorder[head[v]],hldorder[v]}); v=parent[head[v]].first; } else { path.push_back({hldorder[u],hldorder[v]}); break; } } reverse(path.begin(),path.end()); if(type) path.front().first++; return path; } size_t hld_lca(size_t u,size_t v){ while(1){ if(hldorder[u]>hldorder[v]) swap(u,v); if(head[u]==head[v]) return u; v=parent[head[v]].first; } } //O(N) after make_child and make_parent void make_eulertour(void){ dfs2(reorder.front()); eulertour_range.resize(num); for(int i = 0; i < eulertour.size(); ++i) eulertour_range[eulertour[i]].second = i; for(int i = eulertour.size()-1; 0 <= i; --i) eulertour_range[eulertour[i]].first = i; return; } //for make_eulertour void dfs2(int from){ eulertour.push_back(from); for(auto& e:child[from]){ int to = e.first; dfs2(to); eulertour.push_back(from); } } }; //depth,dist //https://atcoder.jp/contests/abc126/tasks/abc126_d //child //https://atcoder.jp/contests/abc133/tasks/abc133_e //lca //https://atcoder.jp/contests/abc014/tasks/abc014_4 //weighted lca //https://atcoder.jp/contests/code-thanks-festival-2017-open/tasks/code_thanks_festival_2017_h //https://atcoder.jp/contests/cf16-tournament-round1-open/tasks/asaporo_c //diameter //https://atcoder.jp/contests/agc033/tasks/agc033_c //descendant //https://atcoder.jp/contests/code-thanks-festival-2018/tasks/code_thanks_festival_2018_f //rerooting //https://yukicoder.me/problems/no/922 //size //https://yukicoder.me/problems/no/872 //eulerTour //https://yukicoder.me/problems/no/900 //hld //https://yukicoder.me/problems/no/399 //https://yukicoder.me/problems/no/650 template<class T> struct TreeOperator{ using TypeDist = T; inline static constexpr size_t bit = 20; inline static constexpr TypeDist unit_dist = 0; inline static constexpr TypeDist unit_lca = 0; inline static constexpr TypeDist func_dist(const TypeDist& parent,const TypeDist& w){return parent+w;} inline static constexpr pair<size_t,TypeDist> func_lca(const pair<size_t,TypeDist>& l,const pair<size_t,TypeDist>& r){return make_pair(l.first,l.second+r.second);} template<class TypeReroot> inline static constexpr TypeReroot func_reroot(const TypeReroot& l,const TypeReroot& r) { return {l.first+r.first+r.second,l.second+r.second}; } template<class TypeReroot> inline static constexpr TypeReroot func_reroot_merge(const TypeReroot& l,const TypeReroot& r) { return {l.first+r.first,l.second+r.second}; } }; //Tree<treeOperator<ll>> tree(N); int main() { int N; cin >> N; Tree<TreeOperator<ll>> tree(N); for(int i = 0; i < N-1; ++i){ int u,v,w; cin >> u >> v >> w; u--,v--; tree.make_edge(u,v,w); tree.make_edge(v,u,w); } tree.make_depth(0); tree.make_child(); tree.make_size(); ll ans = 0; for(int pa:tree.order) for(auto e:tree.child[pa]) ans += e.second*tree.size[e.first]*(N-tree.size[e.first])*2LL; cout << ans << endl; return 0; }